NUTM2A-AS1 silencing alleviates LPS-induced apoptosis and inflammation in dental pulp cells through targeting let-7c-5p/HMGB1 axis.
摘要:
Long non-coding RNA (lncRNA) NUTM2A antisense RNA 1 (NUTM2A-AS1) has been reported to be abnormally up-regulated in pulpitis tissues. However, the function of NUTM2A-AS1 in pulpitis remains unclear. The aim of this study was to investigate the role and working mechanism of NUTM2A-AS1 in pulpitis using lipopolysaccharide (LPS)-treated human dental pulp cells (HDPCs). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry and lactate dehydrogenase (LDH) release detection assay were conducted to analyze the viability of HDPCs. Cell inflammatory response was analyzed through measuring the protein levels of interleukin-6 (IL-6) and IL-8. Western blot assay and quantitative real-time polymerase chain reaction (qRT-PCR) were applied to measure protein expression and RNA expression, respectively. Bioinformatic database StarBase was used to predict the possible targets of NUTM2A-AS1 and let-7c-5p, and dual-luciferase reporter assay was conducted to verify these intermolecular interactions. LPS stimulation restrained cell viability and induced cell apoptosis and inflammation of HDPCs. LPS exposure up-regulated the expression of NUTM2A-AS1 and High-Mobility Group Box 1 (HMGB1) and down-regulated the level of let-7c-5p. LPS-induced injury in HDPCs was partly attenuated by the silencing of NUTM2A-AS1 or HMGB1. Let-7c-5p was confirmed as a direct target of NUTM2A-AS1, and let-7c-5p bound to the 3' untranslated region (3'UTR) of HMGB1 messenger RNA (mRNA) in HDPCs. HMGB1 overexpression largely overturned NUTM2A-AS1 silencing-mediated effects in LPS-induced HDPCs. NUTM2A-AS1 knockdown attenuated LPS-induced damage in HDPCs partly through targeting let-7c-5p/HMGB1 axis.
收起
展开
DOI:
10.1016/j.intimp.2021.107497
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(100)
参考文献(0)
引证文献(7)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无