-
Differential influence of antibiotic therapy and other medications on oncological outcomes of patients with non-small cell lung cancer treated with first-line pembrolizumab versus cytotoxic chemotherapy.
Some concomitant medications including antibiotics (ATB) have been reproducibly associated with worse survival following immune checkpoint inhibitors (ICIs) in unselected patients with non-small cell lung cancer (NSCLC) (according to programmed death-ligand 1 (PD-L1) expression and treatment line). Whether such relationship is causative or associative is matter of debate.
We present the outcomes analysis according to concomitant baseline medications (prior to ICI initiation) with putative immune-modulatory effects in a large cohort of patients with metastatic NSCLC with a PD-L1 expression ≥50%, receiving first-line pembrolizumab monotherapy. We also evaluated a control cohort of patients with metastatic NSCLC treated with first-line chemotherapy. The interaction between key medications and therapeutic modality (pembrolizumab vs chemotherapy) was validated in pooled multivariable analyses.
950 and 595 patients were included in the pembrolizumab and chemotherapy cohorts, respectively. Corticosteroid and proton pump inhibitor (PPI) therapy but not ATB therapy was associated with poorer performance status at baseline in both the cohorts. No association with clinical outcomes was found according to baseline statin, aspirin, β-blocker and metformin within the pembrolizumab cohort. On the multivariable analysis, ATB emerged as a strong predictor of worse overall survival (OS) (HR=1.42 (95% CI 1.13 to 1.79); p=0.0024), and progression free survival (PFS) (HR=1.29 (95% CI 1.04 to 1.59); p=0.0192) in the pembrolizumab but not in the chemotherapy cohort. Corticosteroids were associated with shorter PFS (HR=1.69 (95% CI 1.42 to 2.03); p<0.0001), and OS (HR=1.93 (95% CI 1.59 to 2.35); p<0.0001) following pembrolizumab, and shorter PFS (HR=1.30 (95% CI 1.08 to 1.56), p=0.0046) and OS (HR=1.58 (95% CI 1.29 to 1.94), p<0.0001), following chemotherapy. PPIs were associated with worse OS (HR=1.49 (95% CI 1.26 to 1.77); p<0.0001) with pembrolizumab and shorter OS (HR=1.12 (95% CI 1.02 to 1.24), p=0.0139), with chemotherapy. At the pooled analysis, there was a statistically significant interaction with treatment (pembrolizumab vs chemotherapy) for corticosteroids (p=0.0020) and PPIs (p=0.0460) with respect to OS, for corticosteroids (p<0.0001), ATB (p=0.0290), and PPIs (p=0.0487) with respect to PFS, and only corticosteroids (p=0.0033) with respect to objective response rate.
In this study, we validate the significant negative impact of ATB on pembrolizumab monotherapy but not chemotherapy outcomes in NSCLC, producing further evidence about their underlying immune-modulatory effect. Even though the magnitude of the impact of corticosteroids and PPIs is significantly different across the cohorts, their effects might be driven by adverse disease features.
Cortellini A
,Di Maio M
,Nigro O
,Leonetti A
,Cortinovis DL
,Aerts JG
,Guaitoli G
,Barbieri F
,Giusti R
,Ferrara MG
,Bria E
,D'Argento E
,Grossi F
,Rijavec E
,Guida A
,Berardi R
,Torniai M
,Sforza V
,Genova C
,Mazzoni F
,Garassino MC
,De Toma A
,Signorelli D
,Gelibter A
,Siringo M
,Marchetti P
,Macerelli M
,Rastelli F
,Chiari R
,Rocco D
,Della Gravara L
,Inno A
,Michele T
,Grassadonia A
,Di Marino P
,Mansueto G
,Zoratto F
,Filetti M
,Santini D
,Citarella F
,Russano M
,Cantini L
,Tuzi A
,Bordi P
,Minuti G
,Landi L
,Ricciardi S
,Migliorino MR
,Passiglia F
,Bironzo P
,Metro G
,Adamo V
,Russo A
,Spinelli GP
,Banna GL
,Friedlaender A
,Addeo A
,Cannita K
,Ficorella C
,Porzio G
,Pinato DJ
... -
《Journal for ImmunoTherapy of Cancer》
-
Predictive ability of a drug-based score in patients with advanced non-small-cell lung cancer receiving first-line immunotherapy.
We previously demonstrated the cumulative poor prognostic role of concomitant medications on the clinical outcome of patients with advanced cancer treated with immune checkpoint inhibitors, creating and validating a drug-based prognostic score to be calculated before immunotherapy initiation in patients with advanced solid tumours. This 'drug score' was calculated assigning score 1 for each between proton-pump inhibitor and antibiotic administration until a month before cancer therapy initiation and score 2 in case of corticosteroid intake. The good risk group included patients with score 0, intermediate risk with score 1-2 and poor risk with score 3-4.
Aiming at validating the prognostic and putative predictive ability depending on the anticancer therapy, we performed the present comparative analysis in two cohorts of advanced non-small-cell lung cancer (NSCLC), respectively, receiving first-line pembrolizumab or chemotherapy through a random case-control matching and through a pooled multivariable analysis including the interaction between the computed score and the therapeutic modality (pembrolizumab vs chemotherapy).
Nine hundred fifty and 595 patients were included in the pembrolizumab and chemotherapy cohorts, respectively. After the case-control random matching, 589 patients from the pembrolizumab cohort and 589 from the chemotherapy cohort were paired, with no statistically significant differences between the characteristics of the matched subjects. Among the pembrolizumab-treated group, good, intermediate and poor risk evaluable patients achieved an objective response rate (ORR) of 50.0%, 37.7% and 23.4%, respectively, (p < 0.0001), whereas among the chemotherapy-treated group, patients achieved an ORR of 37.0%, 40.0% and 32.4%, respectively (p = 0.4346). The median progression-free survival (PFS) of good, intermediate and poor risk groups was 13.9 months, 6.3 months and 2.8 months, respectively, within the pembrolizumab cohort (p < 0.0001), and 6.2 months, 6.2 months and 4.3 months, respectively, within the chemotherapy cohort (p = 0.0280). Among the pembrolizumab-treated patients, the median overall survival (OS) for good, intermediate and poor risk patients was 31.4 months, 14.5 months and 5.8 months, respectively, (p < 0.0001), whereas among the chemotherapy-treated patients, it was 18.3 months, 16.8 months and 10.6 months, respectively (p = 0.0003). A similar trend was reported considering the two entire populations. At the pooled analysis, the interaction term between the score and the therapeutic modality was statistically significant with respect to ORR (p = 0.0052), PFS (p = 0.0003) and OS (p < 0.0001), confirming the significantly different effect of the score within the two cohorts.
Our 'drug score' showed a predictive ability with respect to ORR in the immunotherapy cohort only, suggesting it might be a useful tool for identifying patients unlikely to benefit from first-line single-agent pembrolizumab. In addition, the prognostic stratification in terms of PFS and OS was significantly more pronounced among the pembrolizumab-treated patients.
Buti S
,Bersanelli M
,Perrone F
,Bracarda S
,Di Maio M
,Giusti R
,Nigro O
,Cortinovis DL
,Aerts JGJV
,Guaitoli G
,Barbieri F
,Ferrara MG
,Bria E
,Grossi F
,Bareggi C
,Berardi R
,Torniai M
,Cantini L
,Sforza V
,Genova C
,Chiari R
,Rocco D
,Della Gravara L
,Gori S
,De Tursi M
,Di Marino P
,Mansueto G
,Zoratto F
,Filetti M
,Citarella F
,Russano M
,Mazzoni F
,Garassino MC
,De Toma A
,Signorelli D
,Gelibter A
,Siringo M
,Follador A
,Bisonni R
,Tuzi A
,Minuti G
,Landi L
,Ricciardi S
,Migliorino MR
,Tabbò F
,Olmetto E
,Metro G
,Adamo V
,Russo A
,Spinelli GP
,Banna GL
,Addeo A
,Friedlaender A
,Cannita K
,Porzio G
,Ficorella C
,Carmisciano L
,Pinato DJ
,Mazzaschi G
,Tiseo M
,Cortellini A
... -
《-》
-
Single or combined immune checkpoint inhibitors compared to first-line platinum-based chemotherapy with or without bevacizumab for people with advanced non-small cell lung cancer.
Immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 axis have changed the first-line treatment of people with advanced non-small cell lung cancer (NSCLC). Single-agent pembrolizumab (a PD-1 inhibitor) is currently the standard of care as monotherapy in patients with PD-L1 expression ≥ 50%, either alone or in combination with chemotherapy when PD-L1 expression is less than 50%. Atezolizumab (PD-L1 inhibitor) has also been approved in combination with chemotherapy and bevacizumab (an anti-angiogenic antibody) in first-line NSCLC regardless of PD-L1 expression. The combination of first-line PD-1/PD-L1 inhibitors with anti-CTLA-4 antibodies has also been shown to improve survival compared to platinum-based chemotherapy in advanced NSCLC, particularly in people with high tumour mutational burden (TMB). The association of ipilimumab (an anti CTLA4) and nivolumab (PD-1 inhibitor) has been approved by the US Food and Drug Administration (FDA) in all patients with PD-L1 expression ≥1%. Although these antibodies are currently used in clinical practice, some questions remain unanswered, such as the best-treatment strategy, the role of different biomarkers for treatment selection and the effectiveness of immunotherapy according to specific clinical characteristics.
Primary objective: to determine the effectiveness and safety of first-line immune checkpoint inhibitors (ICIs), as monotherapy or in combination, compared to platinum-based chemotherapy, with or without bevacizumab for people with advanced NSCLC, according to the level of PD-L1 expression.
to maintain the currency of evidence using a living systematic review approach.
We performed an electronic search of the main databases (Cochrane Lung Cancer Group Trial Register, Cochrane Central Register of Controlled Trials, MEDLINE, Embase) from inception until 21 October 2020 and conferences meetings from 2015 onwards.
We included randomised controlled trials (RCTs) reporting on the efficacy or safety of first-line ICI treatment for adults with advanced NSCLC who had not previously received any anticancer treatment. We included trials comparing single- or double-ICI treatment to standard first-line therapy (platinum-based chemotherapy +/- bevacizumab). All data come from 'international multicentre studies involving adults, age 18 or over, with histologically-confirmed stage IV NSCLC who had not received any previous systemic anti-cancer treatment for advanced disease.
Three review authors independently assessed the search results and a fourth review author resolved any disagreements. Primary outcomes were overall survival (OS) and progression-free survival (PFS); secondary outcomes were overall objective response rate (ORR) by RECIST v 1.1, grade 3 to 5 treatment-related adverse events (AEs) (CTCAE v 5.0) and health-related quality of life (HRQoL). We performed meta-analyses where appropriate using the random-effects model for hazard ratios (HRs) or risk ratios (RRs), with 95% confidence intervals (95% CIs), and used the I² statistic to investigate heterogeneity.
Main results We identified 15 trials for inclusion, seven completed and eight ongoing trials. We obtained data for 5893 participants from seven trials comparing first-line single- (six trials) or double- (two trials) agent ICI with platinum-based chemotherapy, one trial comparing both first-line single- and double-agent ICsI with platinum-based chemotherapy. All trials were at low risk of selection and detection bias, some were classified at high risk of performance, attrition or other source of bias. The overall certainty of evidence according to GRADE ranged from moderate-to-low because of risk of bias, inconsistency, or imprecision. The majority of the included trials reported their outcomes by PD-L1 expressions, with PD-L1 ≥ 50 being considered the most clinically useful cut-off level for decision makers. Also, iIn order to avoid overlaps between various PDL-1 expressions we prioritised the review outcomes according to PD-L1 ≥ 50. Single-agent ICI In the PD-L1 expression ≥ 50% group single-agent ICI probably improved OS compared to platinum-based chemotherapy (hazard ratio (HR) 0.68, 95% confidence interval (CI) 0.60 to 0.76, 6 RCTs, 2111 participants, moderate-certainty evidence). In this group, single-agent ICI also may improve PFS (HR: 0.68, 95% CI 0.52 to 0.88, 5 RCTs, 1886 participants, low-certainty evidence) and ORR (risk ratio (RR):1.40, 95% CI 1.12 to 1.75, 4 RCTs, 1672 participants, low-certainty evidence). HRQoL data were available for only one study including only people with PD-L1 expression ≥ 50%, which suggested that single-agent ICI may improve HRQoL at 15 weeks compared to platinum-based chemotherapy (RR: 1.51, 95% CI 1.08 to 2.10, 1 RCT, 297 participants, low-certainty evidence). In the included studies, treatment-related AEs were not reported according to PD-L1 expression levels. Grade 3-4 AEs may be less frequent with single-agent ICI compared to platinum-based chemotherapy (RR: 0.41, 95% CI 0.33 to 0.50, I² = 62%, 5 RCTs, 3346 participants, low-certainty evidence). More information about efficacy of single-agent ICI compared to platinum-based chemotherapy according to the level of PD-L1 expression and to TMB status or specific clinical characteristics is available in the full text. Double-agent ICI Double-ICI treatment probably prolonged OS compared to platinum-based chemotherapy in people with PD-L1 expression ≥50% (HR: 0.72, 95% CI 0.59 to 0.89 2 RCTs, 612 participants, moderate-certainty evidence). Trials did not report data on HRQoL, PFS and ORR according to PD-L1 groups. Treatment related AEs were not reported according to PD-L1 expression levels. The frequency of grade 3-4 AEs may not differ between double-ICI treatment and platinum-based chemotherapy (RR: 0.78, 95% CI 0.55 to 1.09, I² = 81%, 2 RCTs, 1869 participants, low-certainty evidence). More information about efficacy of double-agent ICI according to the level of PD-L1 expression and to TMB status is available in the full text.
Authors' conclusions The evidence in this review suggests that single-agent ICI in people with NSCLC and PD-L1 ≥50% probably leads to a higher overall survival rate and may lead to a higher progression-free survival and overall response rate when compared to platinum-based chemotherapy and may also lead to a lower rate of adverse events and higher HRQoL. Combined ICI in people with NSCLC and PD-L1 ≥50% also probably leads to a higher overall survival rate when compared to platinum-based chemotherapy, but its effect on progression-free survival, overall response rate and HRQoL is unknown due to a lack of data. The rate of adverse events may not differ between groups.
Ferrara R
,Imbimbo M
,Malouf R
,Paget-Bailly S
,Calais F
,Marchal C
,Westeel V
... -
《Cochrane Database of Systematic Reviews》
-
Single or combined immune checkpoint inhibitors compared to first-line platinum-based chemotherapy with or without bevacizumab for people with advanced non-small cell lung cancer.
Immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 axis have changed the first-line treatment of people with advanced non-small cell lung cancer (NSCLC). Single-agent pembrolizumab (a PD-1 inhibitor) is currently the standard of care as monotherapy in patients with PD-L1 expression ≥ 50%, either alone or in combination with chemotherapy when PD-L1 expression is less than 50%. Atezolizumab (PD-L1 inhibitor) has also been approved in combination with chemotherapy and bevacizumab (an anti-angiogenic antibody) in first-line NSCLC regardless of PD-L1 expression. The combination of first-line PD-1/PD-L1 inhibitors with anti-CTLA-4 antibodies has also been shown to improve survival compared to platinum-based chemotherapy in advanced NSCLC, particularly in people with high tumour mutational burden (TMB). The association of ipilimumab (an anti CTLA4) and nivolumab (PD-1 inhibitor) has been approved by the US Food and Drug Administration (FDA) in all patients with PD-L1 expression ≥1%. Although these antibodies are currently used in clinical practice, some questions remain unanswered, such as the best-treatment strategy, the role of different biomarkers for treatment selection and the effectiveness of immunotherapy according to specific clinical characteristics.
To determine the effectiveness and safety of first-line immune checkpoint inhibitors (ICIs), as monotherapy or in combination, compared to platinum-based chemotherapy, with or without bevacizumab for people with advanced NSCLC, according to the level of PD-L1 expression.
We performed an electronic search of the main databases (Cochrane Central Register of Controlled Trials, MEDLINE, Embase) from inception until 31 December 2020 and conferences meetings from 2015 onwards.
We included randomised controlled trials (RCTs) reporting on the efficacy or safety of first-line ICI treatment for adults with advanced NSCLC who had not previously received any anticancer treatment. We included trials comparing single- or double-ICI treatment to standard first-line therapy (platinum-based chemotherapy +/- bevacizumab). All data come from 'international multicentre studies involving adults, age 18 or over, with histologically-confirmed stage IV NSCLC.
Three review authors independently assessed the search results and a fourth review author resolved any disagreements. Primary outcomes were overall survival (OS) and progression-free survival (PFS); secondary outcomes were overall objective response rate (ORR) by RECIST v 1.1, grade 3 to 5 treatment-related adverse events (AEs) (CTCAE v 5.0) and health-related quality of life (HRQoL). We performed meta-analyses where appropriate using the random-effects model for hazard ratios (HRs) or risk ratios (RRs), with 95% confidence intervals (95% CIs), and used the I² statistic to investigate heterogeneity.
Main results We identified 15 trials for inclusion, seven completed and eight ongoing trials. We obtained data for 5893 participants from seven trials comparing first-line single- (six trials) or double- (two trials) agent ICI with platinum-based chemotherapy, one trial comparing both first-line single- and double-agent ICsI with platinum-based chemotherapy. All trials were at low risk of selection and detection bias, some were classified at high risk of performance, attrition or other source of bias. The overall certainty of evidence according to GRADE ranged from moderate-to-low because of risk of bias, inconsistency, or imprecision. The majority of the included trials reported their outcomes by PD-L1 expressions, with PD-L1 ≥ 50 being considered the most clinically useful cut-off level for decision makers. Also, iIn order to avoid overlaps between various PDL-1 expressions we prioritised the review outcomes according to PD-L1 ≥ 50. Single-agent ICI In the PD-L1 expression ≥ 50% group single-agent ICI probably improved OS compared to platinum-based chemotherapy (hazard ratio (HR) 0.68, 95% confidence interval (CI) 0.60 to 0.76, 6 RCTs, 2111 participants, moderate-certainty evidence). In this group, single-agent ICI also may improve PFS (HR: 0.68, 95% CI 0.52 to 0.88, 5 RCTs, 1886 participants, low-certainty evidence) and ORR (risk ratio (RR):1.40, 95% CI 1.12 to 1.75, 4 RCTs, 1672 participants, low-certainty evidence). HRQoL data were available for only one study including only people with PD-L1 expression ≥ 50%, which suggested that single-agent ICI may improve HRQoL at 15 weeks compared to platinum-based chemotherapy (RR: 1.51, 95% CI 1.08 to 2.10, 1 RCT, 297 participants, low-certainty evidence). In the included studies, treatment-related AEs were not reported according to PD-L1 expression levels. Grade 3-4 AEs may be less frequent with single-agent ICI compared to platinum-based chemotherapy (RR: 0.41, 95% CI 0.33 to 0.50, I² = 62%, 5 RCTs, 3346 participants, low-certainty evidence). More information about efficacy of single-agent ICI compared to platinum-based chemotherapy according to the level of PD-L1 expression and to TMB status or specific clinical characteristics is available in the full text. Double-agent ICI Double-ICI treatment probably prolonged OS compared to platinum-based chemotherapy in people with PD-L1 expression ≥50% (HR: 0.72, 95% CI 0.59 to 0.89 2 RCTs, 612 participants, moderate-certainty evidence). Trials did not report data on HRQoL, PFS and ORR according to PD-L1 groups. Treatment related AEs were not reported according to PD-L1 expression levels. The frequency of grade 3-4 AEs may not differ between double-ICI treatment and platinum-based chemotherapy (RR: 0.78, 95% CI 0.55 to 1.09, I² = 81%, 2 RCTs, 1869 participants, low-certainty evidence). More information about efficacy of double-agent ICI according to the level of PD-L1 expression and to TMB status is available in the full text.
Authors' conclusions The evidence in this review suggests that single-agent ICI in people with NSCLC and PD-L1 ≥50% probably leads to a higher overall survival rate and may lead to a higher progression-free survival and overall response rate when compared to platinum-based chemotherapy and may also lead to a lower rate of adverse events and higher HRQoL. Combined ICI in people with NSCLC and PD-L1 ≥50% also probably leads to a higher overall survival rate when compared to platinum-based chemotherapy, but its effect on progression-free survival, overall response rate and HRQoL is unknown due to a lack of data. The rate of adverse events may not differ between groups. This review used to be a living review. It is transitioned out of living mode because current research is exploring ICI in association with chemotherapy or other immunotherapeutic drugs versus ICI as single agent rather than platinum based chemotherapy.
Ferrara R
,Imbimbo M
,Malouf R
,Paget-Bailly S
,Calais F
,Marchal C
,Westeel V
... -
《Cochrane Database of Systematic Reviews》
-
The effects of antibiotics on the efficacy of immune checkpoint inhibitors in patients with non-small-cell lung cancer differ based on PD-L1 expression.
Immune checkpoint inhibitors (ICIs) are essential for treatment of various malignancies, including non-small-cell lung cancer (NSCLC). Recently, several studies have shown that the gut microbiome plays an important role in ICI treatment of solid cancers, and antibiotic (ATB) use had a negative impact on the outcomes of ICI treatment via dysbiosis in the gut. However, whether this is applicable to NSCLC remains unclear. The impact of ATBs based on PD-L1 expression also remains unclear.
We retrospectively reviewed the medical records of patients with NSCLC who received ICI monotherapy (anti-PD-1 or anti-PD-L1 antibody) at nine institutions from December 2015 to May 2018. Outcomes with use of ATBs during the 2 months before or a month after initiation of ICI treatment, including progression-free survival (PFS) and overall survival (OS), were investigated using the Kaplan-Meier method. Multivariate analysis was also conducted using a Cox proportional hazards model.
A total of 531 patients were included in this study, among whom 98 (18.5%) received ATBs before or after ICI treatment. ATB use was significantly associated with a shorter median OS (11.7 months in the ATB group vs. 16.1 months in the non-ATB group; p = 0.028), whereas the difference in PFS was not significant (3.5 months in both the groups; p = 0.287). We next investigated the association based on PD-L1 expression in the 265 patients for whom PD-L1 expression was determined. There was no significant difference in the median OS or PFS between patients with NSCLC and PD-L1 expression <50% receiving ATBs and those not receiving ATBs (PFS: 3.3 vs. 2.8 months, p = 0.88; OS: 9.5 vs. 17.1 months, p = 0.24). Conversely, patients with NSCLC and PD-L1 expression ≥50% receiving ATBs showed significantly shorter median PFS and OS (PFS: 4.2 vs. 9.4 months, p = 0.012; OS: 11.9 vs. 28.4 months, p = 0.011). The impact of ATBs in patients with NSCLC and PD-L1 expression ≥50% was more significant than that in the entire cohort.
Our results indicate that the impact of ATB use on the efficacy of ICIs differed based on PD-L1 expression in patients with advanced NSCLC. A negative impact of ATB use was found in patients with NSCLC and PD-L1 expression ≥50% but not in those with PD-L1 expression <50%.
Ochi N
,Ichihara E
,Takigawa N
,Harada D
,Inoue K
,Shibayama T
,Hosokawa S
,Kishino D
,Harita S
,Oda N
,Hara N
,Hotta K
,Maeda Y
,Kiura K
... -
《-》