-
A Risk Signature with Nine Stemness Index-Associated Genes for Predicting Survival of Patients with Uterine Corpus Endometrial Carcinoma.
To identify mRNA expression-based stemness index- (mRNAsi-) related genes and build an mRNAsi-related risk signature for endometrial cancer.
We collected mRNAsi data of endometrial cancer samples from The Cancer Genome Atlas (TCGA) and analyzed their relationship with the main clinicopathological characteristics and prognosis of endometrial cancer patients. We screened the top 50% of the genes in TCGA for weighted gene correlation network analysis (WGCNA) to explore mRNAsi-related gene sets. Among these mRNAsi-related genes, we further screened for those related to the prognosis of endometrial cancer patients via univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis. Using stepwise multivariate Cox regression analysis, a stemness index-related risk signature was constructed. Finally, we identified potential prognostic biomarkers for endometrial cancer by combining the GEO database and immunohistochemical staining.
The mRNAsi of endometrial cancer samples was significantly higher than that of normal samples and was related to the International Federation of Gynecology and Obstetrics (FIGO) stage, pathological grade, postoperative tumor status, and overall survival of endometrial cancer patients. We identified 21 mRNAsi-related gene modules, and 1,324 genes were obtained from the most relevant module. TCGA samples were divided into training and validation cohorts, and the training cohort was used to construct a nine-mRNAsi-related gene signature (B3GAT2, CD3EAP, DMC1, FRMPD3, LINC01224, LINC02068, LY6H, NR6A1, and TLE2). High-risk and low-risk patients had significant prognostic differences, and the risk signature could accurately predict their 1-, 3-, and 5-year survival. The nomogram composed of risk score and multiple clinicopathological features could accurately predict 1-, 3-, and 5-year survival. Finally, CD3EAP was found to be a novel prognostic biomarker for endometrial cancer.
Endometrial cancer cell stemness is related to patient prognosis. The nine-gene risk signature is an independent prognostic factor and can accurately predict endometrial cancer patient prognosis.
Xu H
,Zou R
,Liu J
,Zhu L
... -
《-》
-
Prognostic Value of a Stemness Index-Associated Signature in Primary Lower-Grade Glioma.
As a prevalent and infiltrative cancer type of the central nervous system, the prognosis of lower-grade glioma (LGG) in adults is highly heterogeneous. Recent evidence has demonstrated the prognostic value of the mRNA expression-based stemness index (mRNAsi) in LGG. Our aim was to develop a stemness index-based signature (SI-signature) for risk stratification and survival prediction.
Differentially expressed genes (DEGs) between LGG in the Cancer Genome Atlas (TCGA) and normal brain tissue samples from the Genotype-Tissue Expression (GTEx) project were screened out, and the weighted gene correlation network analysis (WGCNA) was employed to identify the mRNAsi-related gene sets. Meanwhile, the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed for the functional annotation of the key genes. ESTIMATE was used to calculate tumor purity for acquiring the correct mRNAsi. Differences in overall survival (OS) between the high and low mRNAsi (corrected mRNAsi) groups were compared using the Kaplan Meier analysis. By combining the Lasso regression with univariate and multivariate Cox regression, the SI-signature was constructed and validated using the Chinese Glioma Genome Atlas (CGGA).
There was a significant difference in OS between the high and low mRNAsi groups, which was also observed in the two corrected mRNAsi groups. Based on threshold limits, 86 DEGs were most significantly associated with mRNAsi via WGCNA. Seven genes (ADAP2, ALOX5AP, APOBEC3C, FCGRT, GNG5, LRRC25, and SP100) were selected to establish a risk signature for primary LGG. The ROC curves showed a fair performance in survival prediction in both the TCGA and the CGGA validation cohorts. Univariate and multivariate Cox regression revealed that the risk group was an independent prognostic factor in primary LGG. The nomogram was developed based on clinical parameters integrated with the risk signature, and its accuracy for predicting 3- and 5-years survival was assessed by the concordance index, the area under the curve of the time-dependent receiver operating characteristics curve, and calibration curves.
The SI-signature with seven genes could serve as an independent predictor, and suggests the importance of stemness features in risk stratification and survival prediction in primary LGG.
Zhang M
,Wang X
,Chen X
,Guo F
,Hong J
... -
《Frontiers in Genetics》
-
Immunological Value of Prognostic Signature Based on Cancer Stem Cell Characteristics in Hepatocellular Carcinoma.
Background: Liver cancer stem cells, characterized by self-renewal and initiating cancer cells, were decisive drivers of progression and therapeutic resistance in hepatocellular carcinoma (HCC). However, a comprehensive understanding of HCC stemness has not been identified. Methods: RNA sequencing information, corresponding clinical annotation, and mutation data of HCC were downloaded from The Cancer Genome Atlas-LIHC project. Two stemness indices, mRNA expression-based stemness index (mRNAsi) and epigenetically regulated-mRNAsi, were used to comprehensively analyze HCC stemness. Estimation of Stromal and Immune Cells in Malignant Tumors using Expression Data and single-sample gene-set enrichment analysis algorithm were performed to characterize the context of tumor immune microenvironment (TIME). Next, differentially expressed gene (DEG) analysis and weighted gene co-expression network analysis (WGCNA) were employed to identify significant mRNAsi-related modules with hub genes. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment pathways were analyzed to functionally annotate these key genes. The least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to establish a prognostic signature. Kaplan-Meier survival curves and receiver operating characteristic (ROC) analysis were applied for prognostic value validation. Seven algorithms (XCELL, TIMER, QUANTISEQ, MCPcounter, EPIC, CIBERSORT, and CIBERSORT-ABS) were utilized to draw the landscape of TIME. Finally, the mutation data were analyzed by employing "maftools" package. Results: mRNAsi was significantly elevated in HCC samples. mRNAsi escalated as tumor grade increased, with poor prognosis presenting the higher stemness index. The stemness-related (greenyellow) modules with 175 hub genes were screened based on DEGs and WGCNA. A prognostic signature was established using LASSO analysis of prognostic hub genes to classify samples into two risk subgroups, which exhibited good prognostic performance. Additionally, prognostic risk-clinical nomogram was drawn to estimate risk quantitatively. Moreover, risk score was significantly associated with contexture of TIME and immunotherapeutic targets. Finally, potential interaction between risk score with tumor mutation burden (TMB) was elucidated. Conclusion: This work comprehensively elucidated that stemness characteristics served as a crucial player in clinical outcome, complexity of TIME, and immunotherapeutic prediction from both mRNAsi and mRNA level. Quantitative identification of stemness characteristics in individual tumor will contribute into predicting clinical outcome, mapping landscape of TIME further optimizing precision immunotherapy.
Xu Q
,Xu H
,Chen S
,Huang W
... -
《Frontiers in Cell and Developmental Biology》
-
Development and validation of a novel stemness-related prognostic model for neuroblastoma using integrated machine learning and bioinformatics analyses.
Neuroblastoma (NB) is a common solid tumor in children, with a dismal prognosis in high-risk cases. Despite advancements in NB treatment, the clinical need for precise prognostic models remains critical, particularly to address the heterogeneity of cancer stemness which plays a pivotal role in tumor aggressiveness and patient outcomes. By utilizing machine learning (ML) techniques, we aimed to explore the cancer stemness features in NB and identify stemness-related hub genes for future investigation and potential targeted therapy.
The public dataset GSE49710 was employed as the training set for acquire gene expression data and NB sample information, including age, stage, and MYCN amplification status and survival. The messenger RNA (mRNA) expression-based stemness index (mRNAsi) was calculated and patients were grouped according to their mRNAsi value. Stemness-related hub genes were identified from the differentially expressed genes (DEGs) to construct a gene signature. This was followed by evaluating the relationship between cancer stemness and the NB immune microenvironment, and the development of a predictive nomogram. We assessed the prognostic outcomes including overall survival (OS) and event-free survival, employing machine learning methods to measure predictive accuracy through concordance indices and validation in an independent cohort E-MTAB-8248.
Based on mRNAsi, we categorized NB patients into two groups to explore the association between varying levels of stemness and their clinical outcomes. High mRNAsi was linked to the advanced International Neuroblastoma Staging System (INSS) stage, amplified MYCN, and elder age. High mRNAsi patients had a significantly poorer prognosis than low mRNAsi cases. According to the multivariate Cox analysis, the mRNAsi was an independent risk factor of prognosis in NB patients. After least absolute shrinkage and selection operator (LASSO) regression analysis, four key genes (ERCC6L, DUXAP10, NCAN, DIRAS3) most related to mRNAsi scores were discovered and a risk model was built. Our model demonstrated a significant prognostic capacity with hazard ratios (HR) ranging from 18.96 to 41.20, P values below 0.0001, and area under the receiver operating characteristic curve (AUC) values of 0.918 in the training set, suggesting high predictive accuracy which was further confirmed by external verification. Individuals with a low four-gene signature score had a favorable outcome and better immune responses. Finally, a nomogram for clinical practice was constructed by integrating the four-gene signature and INSS stage.
Our findings confirm the influence of CSC features in NB prognosis. The newly developed NB stemness-related four-gene signature prognostic signature could facilitate the prognostic prediction, and the identified hub genes may serve as promising targets for individualized treatments.
Xia Y
,Wang C
,Li X
,Gao M
,Hogg HDJ
,Tunthanathip T
,Hulsen T
,Tian X
,Zhao Q
... -
《Translational Pediatrics》
-
Prognostic Prediction Using a Stemness Index-Related Signature in a Cohort of Gastric Cancer.
With characteristic self-renewal and multipotent differentiation, cancer stem cells (CSCs) have a crucial influence on the metastasis, relapse and drug resistance of gastric cancer (GC). However, the genes that participates in the stemness of GC stem cells have not been identified.
The mRNA expression-based stemness index (mRNAsi) was analyzed with differential expressions in GC. The weighted gene co-expression network analysis (WGCNA) was utilized to build a co-expression network targeting differentially expressed genes (DEG) and discover mRNAsi-related modules and genes. We assessed the association between the key genes at both the transcription and protein level. Gene Expression Omnibus (GEO) database was used to validate the expression levels of the key genes. The risk model was established according to the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Furthermore, we determined the prognostic value of the model by employing Kaplan-Meier (KM) plus multivariate Cox analysis.
GC tissues exhibited a substantially higher mRNAsi relative to the healthy non-tumor tissues. Based on WGCNA, 17 key genes (ARHGAP11A, BUB1, BUB1B, C1orf112, CENPF, KIF14, KIF15, KIF18B, KIF4A, NCAPH, PLK4, RACGAP1, RAD54L, SGO2, TPX2, TTK, and XRCC2) were identified. These key genes were clearly overexpressed in GC and validated in the GEO database. The protein-protein interaction (PPI) network as assessed by STRING indicated that the key genes were tightly connected. After LASSO analysis, a nine-gene risk model (BUB1B, NCAPH, KIF15, RAD54L, KIF18B, KIF4A, TTK, SGO2, C1orf112) was constructed. The overall survival in the high-risk group was relatively poor. The area under curve (AUC) of risk score was higher compared to that of clinicopathological characteristics. According to the multivariate Cox analysis, the nine-gene risk model was a predictor of disease outcomes in GC patients (HR, 7.606; 95% CI, 3.037-19.051; P < 0.001). We constructed a prognostic nomogram with well-fitted calibration curve based on risk score and clinical data.
The 17 mRNAsi-related key genes identified in this study could be potential treatment targets in GC treatment, considering that they can inhibit the stemness properties. The nine-gene risk model can be employed to predict the disease outcomes of the patients.
Chen X
,Zhang D
,Jiang F
,Shen Y
,Li X
,Hu X
,Wei P
,Shen X
... -
《Frontiers in Molecular Biosciences》