Climate sensitivity of milk production traits and milk fatty acids in genotyped Holstein dairy cows.

来自 PUBMED

作者:

Bohlouli MYin THammami HGengler NKönig S

展开

摘要:

The aim of this study was the evaluation of climate sensitivity via genomic reaction norm models [i.e., to infer cow milk production and milk fatty acid (FA) responses on temperature-humidity index (THI) alterations]. Test-day milk traits were recorded between 2010 and 2016 from 5,257 first-lactation genotyped Holstein dairy cows. The cows were kept in 16 large-scale cooperator herds, being daughters of 344 genotyped sires. The longitudinal data consisted of 47,789 test-day records for the production traits milk yield (MY), fat yield (FY), and protein yield (PY), and of 20,742 test-day records for 6 FA including C16:0, C18:0, saturated fatty acids (SFA), unsaturated fatty acids (UFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA). After quality control of the genotypic data, 41,057 SNP markers remained for genomic analyses. Meteorological data from the weather station in closest herd distance were used for the calculation of maximum hourly daily THI. Genomic reaction norm models were applied to estimate genetic parameters in a single-step approach for production traits and FA in dependency of THI at different lactation stages, and to evaluate the model stability. In a first evaluation strategy (New_sire), all phenotypic records from daughters of genotyped sires born after 2010 were masked, to mimic a validation population. In the second strategy (New_env), only daughter records of the new sires recorded in the most extreme THI classes were masked, aiming at predicting sire genomic estimated breeding values (GEBV) under heat stress conditions. Model stability was the correlation between GEBV of the new sires in the reduced data set with respective GEBV estimated from all phenotypic data. Among all test-day production traits, PY responded as the most sensitive to heat stress. As observed for the remaining production traits, genetic variances were quite stable across THI, but genetic correlations between PY from temperate climates with PY from extreme THI classes dropped to 0.68. Genetic variances in dependency of THI were very similar for C16:0 and SFA, indicating marginal climatic sensitivity. In the early lactation stage, genetic variances for C18:0, MUFA, PUFA, and UFA were significantly larger in the extreme THI classes compared with the estimates under thermoneutral conditions. For C18:0 and MUFA, PUFA, and UFA in the middle THI classes, genetic correlations in same traits from the early and the later lactation stages were lower than 0.50, indicating strong days in milk influence. Interestingly, within lactation stages, genetic correlations for C18:0 and UFA recorded at low and high THI were quite large, indicating similar genetic mechanisms under stress conditions. The model stability was improved when applying the New_env instead of New_sire strategy, especially for FA in the first stage of lactation. Results indicate moderately accurate genomic predictions for milk traits in extreme THI classes when considering phenotypic data from a broad range of remaining THI. Phenotypically, thermal stress conditions contributed to an increase of UFA, suggesting value as a heat stress biomarker. Furthermore, the quite large genetic variances for UFA at high THI suggest the consideration of UFA in selection strategies for improved heat stress resistance.

收起

展开

DOI:

10.3168/jds.2020-19411

被引量:

9

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(449)

参考文献(0)

引证文献(9)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读