-
Climate sensitivity of milk production traits and milk fatty acids in genotyped Holstein dairy cows.
The aim of this study was the evaluation of climate sensitivity via genomic reaction norm models [i.e., to infer cow milk production and milk fatty acid (FA) responses on temperature-humidity index (THI) alterations]. Test-day milk traits were recorded between 2010 and 2016 from 5,257 first-lactation genotyped Holstein dairy cows. The cows were kept in 16 large-scale cooperator herds, being daughters of 344 genotyped sires. The longitudinal data consisted of 47,789 test-day records for the production traits milk yield (MY), fat yield (FY), and protein yield (PY), and of 20,742 test-day records for 6 FA including C16:0, C18:0, saturated fatty acids (SFA), unsaturated fatty acids (UFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA). After quality control of the genotypic data, 41,057 SNP markers remained for genomic analyses. Meteorological data from the weather station in closest herd distance were used for the calculation of maximum hourly daily THI. Genomic reaction norm models were applied to estimate genetic parameters in a single-step approach for production traits and FA in dependency of THI at different lactation stages, and to evaluate the model stability. In a first evaluation strategy (New_sire), all phenotypic records from daughters of genotyped sires born after 2010 were masked, to mimic a validation population. In the second strategy (New_env), only daughter records of the new sires recorded in the most extreme THI classes were masked, aiming at predicting sire genomic estimated breeding values (GEBV) under heat stress conditions. Model stability was the correlation between GEBV of the new sires in the reduced data set with respective GEBV estimated from all phenotypic data. Among all test-day production traits, PY responded as the most sensitive to heat stress. As observed for the remaining production traits, genetic variances were quite stable across THI, but genetic correlations between PY from temperate climates with PY from extreme THI classes dropped to 0.68. Genetic variances in dependency of THI were very similar for C16:0 and SFA, indicating marginal climatic sensitivity. In the early lactation stage, genetic variances for C18:0, MUFA, PUFA, and UFA were significantly larger in the extreme THI classes compared with the estimates under thermoneutral conditions. For C18:0 and MUFA, PUFA, and UFA in the middle THI classes, genetic correlations in same traits from the early and the later lactation stages were lower than 0.50, indicating strong days in milk influence. Interestingly, within lactation stages, genetic correlations for C18:0 and UFA recorded at low and high THI were quite large, indicating similar genetic mechanisms under stress conditions. The model stability was improved when applying the New_env instead of New_sire strategy, especially for FA in the first stage of lactation. Results indicate moderately accurate genomic predictions for milk traits in extreme THI classes when considering phenotypic data from a broad range of remaining THI. Phenotypically, thermal stress conditions contributed to an increase of UFA, suggesting value as a heat stress biomarker. Furthermore, the quite large genetic variances for UFA at high THI suggest the consideration of UFA in selection strategies for improved heat stress resistance.
Bohlouli M
,Yin T
,Hammami H
,Gengler N
,König S
... -
《-》
-
Genome-wide associations for heat stress response suggest potential candidate genes underlying milk fatty acid composition in dairy cattle.
Contents of milk fatty acids (FA) display remarkable alterations along climatic gradients. Detecting candidate genes underlying such alterations might be beneficial for the exploration of climate sensitivity in dairy cattle. Consequently, we aimed on the definition of FA heat stress indicators, considering FA breeding values in response to temperature-humidity index (THI) alterations. Indicators were used in GWAS, in ongoing gene annotations and for the estimation of chromosome-wide variance components. The phenotypic data set consisted of 39,600 test-day milk FA records from 5,757 first-lactation Holstein dairy cows kept in 16 large-scale German cooperator herds. The FA traits were C18:0, polyunsaturated fatty acids (PUFA), saturated fatty acids (SFA), and unsaturated fatty acids (UFA). After genotype quality control, 40,523 SNP markers from 3,266 cows and 930 sires were considered. Meteorological data from the weather station in closest herd distance were used for the calculation of maximum hourly daily THI, which were allocated to 10 different THI classes. The same FA from 3 stages of lactation were considered as different, but genetically correlated traits. Consequently, a 3-trait reaction norm model was used to estimate genetic parameters and breeding values for FA along THI classes, considering either pedigree (A) or genomic (G) relationship matrices. De-regressed proofs and genomic estimated breeding values at the intermediate THI class 5 and at the extreme THI class 10 were used as pseudophenotypes in ongoing genomic analyses for thermoneutral (TNC) and heat stress conditions (HSC), respectively. The differences in de-regressed proofs and in genomic estimated breeding values from both THI classes were pseudophenotypes for heat stress response (HSR). Genetic correlations between the same FA under TNC and HSC were smallest in the first lactation stage and ranged from 0.20 for PUFA to 0.87 for SFA when modeling with the A matrix, and from 0.35 for UFA to 0.86 for SFA when modeling with the G matrix. In the first lactation stage, larger additive genetic variances under HSC compared with TNC indicate climate sensitivity for C18:0, PUFA, and UFA. Climate sensitivity was also reflected by pronounced chromosome-wide genetic variances for HSR of PUFA and UFA in the first stage of lactation. For all FA under TNC, HSC, and HSR, quite large genetic variance proportions were explained by BTA14. In GWAS, 30 SNP (within or close to 38 potential candidate genes) overlapped for HSR of the different FA. One unique potential candidate gene (AMFR) was detected for HSR of PUFA, 15 for HSR of SFA (ADGRB1, DENND3, DUSP16, EFR3A, EMP1, ENSBTAG00000003838, EPS8, MGP, PIK3C2G, STYK1, TMEM71, GSG1, SMARCE1, CCDC57, and FASN) and 3 for HSR of UFA (ENSBTAG00000048091, PAEP, and EPPK1). The identified unique genes play key roles in milk FA synthesis and are associated with disease resistance in dairy cattle. The results suggest consideration of FA in combination with climatic responses when inferring genetic mechanisms of heat stress in dairy cows.
Bohlouli M
,Halli K
,Yin T
,Gengler N
,König S
... -
《-》
-
Genetic analysis of heat stress effects on yield traits, udder health, and fatty acids of Walloon Holstein cows.
Genetic parameters that considered tolerance for heat stress were estimated for production, udder health, and milk composition traits. Data included 202,733 test-day records for milk, fat, and protein yields, fat and protein percentages, somatic cell score (SCS), 10 individual milk fatty acids (FA) predicted by mid-infrared spectrometry, and 7 FA groups. Data were from 34,468 first-lactation Holstein cows in 862 herds in the Walloon region of Belgium and were collected between 2007 and 2010. Test-day records were merged with daily temperature-humidity index (THI) values based on meteorological records from public weather stations. The maximum distance between each farm and its corresponding weather station was 21km. Linear reaction norm models were used to estimate the intercept and slope responses of 23 traits to increasing THI values. Most yield and FA traits had phenotypic and genetic declines as THI increased, whereas SCS, C18:0, C18:1 cis-9, and 4 FA groups (unsaturated FA, monounsaturated FA, polyunsaturated FA, and long-chain FA) increased with THI. Moreover, the latter traits had the largest slope-to-intercept genetic variance ratios, which indicate that they are more affected by heat stress at high THI levels. Estimates of genetic correlations within trait between cold and hot environments were generally high (>0.80). However, lower estimates (<=0.67) were found for SCS, fat yield, and C18:1 cis-9, indicating that animals with the highest genetic merit for those traits in cold environments do not necessarily have the highest genetic merit for the same traits in hot environments. Among all traits, C18:1 cis-9 was the most sensitive to heat stress. As this trait is known to reflect body reserve mobilization, using its variations under hot conditions could be a very affordable milk biomarker of heat stress for dairy cattle expressing the equilibrium between intake and mobilization under warm conditions.
Hammami H
,Vandenplas J
,Vanrobays ML
,Rekik B
,Bastin C
,Gengler N
... -
《-》
-
Genetic parameters for milk yield and quality traits of Brazilian Holstein cows as a function of temperature and humidity index.
Measurements of milk yield (MY), somatic cell score (SCS), percentage of fat (FP), protein (PP), lactose (LP), casein (CP) and percentage of palmitic (C16:0), stearic (C18:0), oleic (C18:1), total saturated (SFA), unsaturated (UFA), monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids in milk from 5,224 Holstein cows were evaluated as a function of a temperature and humidity index (THI). Legendre orthogonal polynomials from second to seventh order were tested. The best fit order for MY, PP and C18:0 was the third, whereas the second for all other traits. The heritability estimates decreased for MY (0.31 to 0.14), FP (0.28 to 0.16), LP (0.43 to 0.30), SCS (0.14 to 0.09), SFA (0.33 to 0.22) and C16:0 (0.31 to 0.26), whereas increased for CP (0.32 to 0.42), MUFA (0.08 to 0.13), UFA (0.07 to 0.11) and C18:1 (0.07 to 0.11) as the THI level increased. For PP, heritabilities (0.26 to 0.39) presented larger values in intermediate THI. For PUFA and C18:0, heritabilities were approximately constant (0.13 to 0.14 and 0.15, respectively). However, the greatest variations may have been the result of the limitations of Legendre polynomials at the extreme points of the curve, and the pattern of heritabilities curves was approximately constant for the evaluated traits. Spearman's rank correlations between breeding values in extreme THI levels were greater than 0.80 for all traits considering all animals, only cows and only bulls. When considering the top 1% and the top 50% animals (only cows, only bulls and all), Spearman correlations smaller than 0.70 were found, suggesting reranking of the animals. Although there was little variation in the variance components over THI, it is possible that there is no heat stress in the animals studied, because, on average, there was no great impact of the thermal load on the traits. One possible explanation is the use of herds with little climatic difference among herds, as well as the use of fans and sprinklers into the barns. However, the THI levels may be important factors in the selection process, as reranking of animals was verified.
Carrara ER
,Petrini J
,Salvian M
,de Oliveira HR
,Rovadoscki GA
,Iung LHS
,Miquilini M
,Machado PF
,Mourão GB
... -
《-》
-
Genotype by heat stress interactions for production and functional traits in dairy cows from an across-generation perspective.
The aim of this study was to analyze time-lagged heat stress (HS) effects during late gestation on genetic co(variance) components in dairy cattle across generations for production, female fertility, and health traits. The data set for production and female fertility traits considered 162,492 Holstein Friesian cows from calving years 2003 to 2012, kept in medium-sized family farms. The health data set included 69,986 cows from calving years 2008 to 2016, kept in participating large-scale co-operator herds. Production traits were milk yield (MKG), fat percentage (fat%), and somatic cell score (SCS) from the first official test-day in first lactation. Female fertility traits were the nonreturn rate after 56 d (NRR56) in heifers and the interval from calving to first insemination (ICFI) in first-parity cows. Health traits included clinical mastitis (MAST), digital dermatitis (DD), and endometritis (EM) in the early lactation period in first-parity cows. Meteorological data included temperature and humidity from public weather stations in closest herd distance. The HS indicator was the temperature-humidity index (THI) during dams' late gestation, also defined as in utero HS. For the genetic analyses of production, female fertility, and health traits in the offspring generation, a sire-maternal grandsire random regression model with Legendre polynomials of order 3 for the production and of order 2 for the fertility and health traits on prenatal THI, was applied. All statistical models additionally considered a random maternal effect. THI from late gestation (i.e., prenatal climate conditions), influenced genetic parameter estimates in the offspring generation. For MKG, heritabilities and additive genetic variances decreased in a wave-like pattern with increasing THI. Especially for THI >58, the decrease was very obvious with a minimal heritability of 0.08. For fat% and SCS, heritabilities increased slightly subjected to prenatal HS conditions at THI >67. The ICFI heritabilities differed marginally across THI [heritability (h2) = 0.02-0.04]. For NRR56, MAST, and DD, curves for heritabilities and genetic variances were U-shaped, with largest estimates at the extreme ends of the THI scale. For EM, heritability increased from THI 25 (h2 = 0.13) to THI 71 (h2 = 0.39). The trait-specific alterations of genetic parameters along the THI gradient indicate pronounced genetic differentiation due to intrauterine HS for NRR56, MAST, DD, and EM, but decreasing genetic variation for MKG and ICFI. Genetic correlations smaller than 0.80 for NRR56, MAST, DD, and EM between THI 65 with corresponding traits at remaining THI indicated genotype by environment interactions. The lowest genetic correlations were identified when considering the most distant THI. For MKG, fat%, SCS, and ICFI, genetic correlations throughout were larger than 0.80, disproving concerns for any genotype by environment interactions. Variations in genetic (co)variance components across prenatal THI may be due to epigenetic modifications in the offspring genome, triggered by in utero HS. Epigenetic modifications have a persistent effect on phenotypic responses, even for traits recorded late in life. However, it is imperative to infer the underlying epigenetic mechanisms in ongoing molecular experiments.
Kipp C
,Brügemann K
,Yin T
,Halli K
,König S
... -
《-》