Investigating the active compounds and mechanism of HuaShi XuanFei formula for prevention and treatment of COVID-19 based on network pharmacology and molecular docking analysis.
Traditional Chinese medicine (TCM) has exerted positive effects in controlling the COVID-19 pandemic. HuaShi XuanFei Formula (HSXFF) was developed to treat patients with mild and general COVID-19 in Zhejiang Province, China. The present study seeks to explore its potentially active compounds and pharmacological mechanisms against COVID-19 based on network pharmacology, molecular docking, and molecular dynamics (MD) simulation. All components of HSXFF were harvested from the pharmacology database of the TCMSP system. COVID-19-related targets were retrieved from using OMIM and GeneCards databases. The herb-compound-targets network was constructed by Cytoscape. The target protein-protein interaction (PPI) network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to discover the potential key target genes and mechanism. The main active compounds of HSXFF were docked with 3C-like (3CL) protease hydrolase and angiotensin-converting enzyme 2 (ACE2). The MD simulation confirmed the binding stability of docking results. The herbs-targets network mainly contained 52 compounds and 70 corresponding targets, including key targets such as RELA, TNF, TP53, IL6, MAPK1, CXCL8, IL-1β, and MAPK14. The GO and KEGG indicated that HSXFF may be mainly acting on the IL-17 signaling pathway, TNF signaling pathway, NF-κB signaling pathway, etc. The molecular docking results indicated that isovitexin and procyanidin B1 showed the highest affinity with 3CL and ACE2, respectively, which were confirmed by MD simulation. These findings suggested HSXFF exerted therapeutic effects involving "multi-compounds and multi-targets." It might be working through directly inhibiting the virus, improving immune function, and reducing the inflammatory in response to anti-COVID-19. In summary, the present study would provide a valuable direction for further research of HSXFF.
Wang J
,Ge W
,Peng X
,Yuan L
,He S
,Fu X
... -
《-》
Network pharmacology, molecular docking integrated surface plasmon resonance technology reveals the mechanism of Toujie Quwen Granules against coronavirus disease 2019 pneumonia.
The Coronavirus disease 2019 pneumonia broke out in 2019 (COVID-19) and spread rapidly, which causes serious harm to the health of people and a huge economic burden around the world.
In this study, the network pharmacology, molecular docking and surface plasmon resonance technology (SPR) were used to explore the potential compounds and interaction mechanism in the Toujie Quwen Granules (TQG) for the treatment of coronavirus pneumonia 2019.
The chemical constituents and compound targets of Lonicerae Japonicae Flos, Pseudostellariae Radix, Artemisia Annua L, Peucedani Radix, Forsythiae Fructus, Scutellariae Radix, Hedysarum Multijugum Maxim, Isatidis Folium, Radix Bupleuri, Fritiliariae Irrhosae Bulbus, Cicadae Periostracum, Poria Cocos Wolf, Pseudobulbus Cremastrae Seu Pleiones, Mume Fructus, Figwort Root and Fritillariae Thunbrgii Bulbus in TQG were searched. The target name was translated to gene name using the UniProt database and then the Chinese medicine-compound-target network was constructed. Protein-protein interaction network (PPI), Gene ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the core targets were performed in the Metascape to predict its mechanism. The top 34 compounds in the Chinese medicine-compound-target network were docked with SARS-CoV-2 3CL enzyme and SARS--CoV--2 RNA-dependent RNA polymerase (RdRp) and then the 13 compounds with lowest affinity score were docked with angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 Spike protein and interleukin 6 to explore its interaction mechanism. Lastly, SPR experiments were done using the quercetin, astragaloside IV, rutin and isoquercitrin, which were screened from the Chinese medicine-compound-target network and molecular docking.
The Chinese medicine-compound-target network includes 16 medicinal materials, 111 compounds and 298 targets, in which the degree of PTGS2, TNF and IL-6 is higher compared with other targets and which are the disease target exactly. The result of GO function enrichment analysis included the response to the molecule of bacterial origin, positive regulation of cell death, apoptotic signaling pathway, cytokine-mediated signaling pathway, cytokine receptor binding and so on. KEGG pathway analysis enrichment revealed two pathways: signaling pathway- IL-17 and signaling pathway- TNF. The result of molecular docking showed that the affinity score of compounds including quercetin, isoquercitrin, astragaloside IV and rutin is higher than other compounds. In addition, the SPR experiments revealed that the quercetin and isoquercitrin were combined with SARS-CoV-2 Spike protein rather than Angiotensin-converting enzyme 2, while astragaloside IV and rutin were combined with ACE2 rather than SARS-CoV-2 Spike protein.
TQG may have therapeutic effects on COVID-19 by regulating viral infection, immune and inflammation related targets and pathways, in the way of multi-component, multi-target and multi-pathway.
Ye M
,Luo G
,Ye D
,She M
,Sun N
,Lu YJ
,Zheng J
... -
《-》
In silico analysis of the potential mechanism of a preventive Chinese medicine formula on coronavirus disease 2019.
With the spread of Coronavirus Disease (2019) (COVID-19), combination with traditional Chinese medicine (TCM) has been widely used as a prevention and therapy strategy in China. Xin guan No.1 (XG-1) prescription is a preventive formula recommended by the Hunan Provincial Administration of TCM to prevent the pandemic of COVID-19.
To explore the potential preventive mechanisms of XG-1 against COVID-19 in the combination of network pharmacology approach, single-cell RNA expression profiling analysis, molecular docking and retrospective study.
Encyclopedia of Traditional Chinese Medicine (ETCM) database was used to determine the meridian tropism, active components and target genes of XG-1. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis were conducted by R Cluster Profiler package (3.14.3). Single cell RNA sequencing (scRNA-seq) data of human lung (GSE122960) was downloaded from Gene Expression Omnibus (GEO) database and analyzed by R Seurat package (3.1.2). Cytoscape (3.7.2) was used to construct the interaction network. The main ingredients in XG-1 were identified by HPLC- Q-TOF- MS and used for molecular docking with COVID-19 3CL hydrolytic enzyme and angiotensin converting enzyme II (ACE2). A retrospective study of 47 close contact participants from Dongtang Community of Hunan Province was conducted to evaluated the preventive effect of XG-1.
According to the network pharmacology analysis, XG-1 formula was closely related to lung-, spleen- and stomach-meridians and include a total of 206 active components and 853 target genes. GO and KEGG pathway enrichment revealed that XG-1 mainly regulated cellular amino acid metabolism process and neuroactive ligand-receptors interaction. The scRNA-seq profiling showed that angiotensin converting enzyme 2 (ACE2) was principally expressed in alveolar type 2 epithelial cells (AT2). 153 genes were up-regulated in AT2 cells expressing ACE2 and 12 genes were obtained by intersecting with XG-1 target genes, of which 3 were related to immunity. Five main chemical ingredients were detected in XG-1 sample by HPLC-Q-TOF-MS. The molecular docking showed that Rutin, Liquiritin and Astragaloside Ⅳ had a good affinity with COVID-19 3CL hydrolytic enzyme and ACE2. Compared with participants who didn't take XG-1, preventive treatment with XG-1gradules resulted in a significant lower rate of testing positive for SARS-CoV-2 nucleic acid (P < 0.0001).
The present study showed that XG-1 exerts a preventive effect in close contacts against COVID-19. The underlying mechanism may be related to modulate immunity response through multiple components, pathways, and several target genes co-expressed with ACE2. These findings provide preliminary evidences and methodological reference for the potential preventive mechanism of XG-1 against COVID-19.
Wu H
,Gong K
,Qin Y
,Yuan Z
,Xia S
,Zhang S
,Yang J
,Yang P
,Li L
,Xie M
... -
《-》