Korean red ginseng suppresses 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced inflammation in the substantia nigra and colon.

来自 PUBMED

作者:

Jeon HBae CHLee YKim HYKim S

展开

摘要:

Parkinson's disease (PD) is a neurodegenerative disease involving dopaminergic neuronal death in the substantia nigra (SN); recent studies have shown that interactions between gut and brain play a critical role in the pathogenesis of PD. In this study, the anti-inflammatory effect of Korean red ginseng (KRG) and the changes in gut microbiota were evaluated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Male nine-week-old C57BL/6 mice were injected intraperitoneally with 30 mg/kg of MPTP at 24-h intervals for 5 days. Two hours after the daily MPTP injection, the mice were orally administered 100 mg/kg of KRG, which continued for 7 days beyond the MPTP injections, for a total of 12 consecutive days. Eight days after the final KRG administration, the pole and rotarod tests were performed and brain and colon samples of the mice were collected. Dopaminergic neuronal death, activation of microglia and astrocytes, α-synuclein and expressions of inflammatory cytokines and disruption of tight junction were evaluated. In addition, 16S ribosomal RNA gene sequencing of mouse fecal samples was performed to investigate microbiome changes. KRG treatment prevented MPTP-induced behavioral impairment, dopaminergic neuronal death, activation of microglia and astrocytes in the nigrostriatal pathway, disruption of tight junction and the increase in α-synuclein, interleukin-1β and tumor necrosis factor-α expression in the colon. The 16S rRNA sequencing revealed that MPTP altered the number of bacterial species and their relative abundances, which were partially suppressed by KRG treatment. Especially, KRG suppressed the abundance of the inflammation-related phylum Verrucomicrobia and genera Ruminococcus and Akkermansia (especially Akkermansia muciniphila), and elevated the abundance of Eubacterium, which produces the anti-inflammatory substances. These findings suggest that KRG prevents MPTP-induced dopaminergic neuronal death, activation of microglia and astrocytes, and accumulation of α-synuclein in the SN, and the regulation of inflammation-related factors in the colon may influence the effect.

收起

展开

DOI:

10.1016/j.bbi.2021.02.028

被引量:

17

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(392)

参考文献(0)

引证文献(17)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读