Inhibition of lncRNA-NEAT1 sensitizes 5-Fu resistant cervical cancer cells through de-repressing the microRNA-34a/LDHA axis.

来自 PUBMED

作者:

Shao XZheng XMa DLiu YLiu G

展开

摘要:

Cervical cancer is one of the most diagnosed malignancies among females. The 5-fluorouracil (5-Fu) is a widely used chemotherapeutic agent against diverse cancers. Despite the initially encouraging progresses, a fraction of cervical cancer patients developed 5-Fu resistance. We detected that nuclear-rich transcripts 1 (NEAT1) was significantly up-regulated in cervical cancer tissues and cell lines. Moreover, NEAT1 was positively associated with 5-Fu resistance. Furthermore, expression of NEAT1 was significantly up-regulated in 5-Fu resistant CaSki cervical cancer cells. Knocking down NEAT1 by shRNA dramatically promoted the sensitivity of 5-Fu resistant CaSki cells. We observed a negative correlation between long noncoding RNA (lncRNA)-NEAT1 and miR-34a in cervical cancer patient tissues. Overexpression of miR-34a significantly sensitized 5-Fu resistant cells. Bioinformatics analysis uncovered that NEAT1 functions as a competitive endogenous RNA (ceRNA) of miR-34a in cervical cancer cells via sponging it at multiple sites to suppress expression of miR-34a. This negative association between NEAT1 and miR-34a was further verified in cervical cancer tissues. We found the 5-Fu resistant cells displayed significantly increased glycolysis rate. Overexpression of miR-34a suppressed cellular glycolysis rate and sensitized 5-Fu resistant cells through direct targeting the 3'-untranslated region (UTR) of LDHA, a glycolysis key enzyme. Importantly, knocking down NEAT1 successfully down-regulated LDHA expressions and glycolysis rate of cervical cancer cells by up-regulating miR-34a, a process could be further rescued by miR-34a inhibition. Finally, we demonstrated inhibition of NEAT1 significantly sensitized cervical cancer cells to 5-Fu through the miR-34a/LDHA pathway. In summary, the present study suggests a new molecular mechanism for the NEAT1-mediated 5-Fu resistance via the miR-34a/LDHA-glycolysis axis.

收起

展开

DOI:

10.1042/BSR20200533

被引量:

21

年份:

2021

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(198)

参考文献(32)

引证文献(21)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读