Sensitivity of Molds From Spoiled Dairy Products Towards Bioprotective Lactic Acid Bacteria Cultures.

来自 PUBMED

作者:

Shi CKnøchel S

展开

摘要:

Fungal spoilage of dairy products is a major concern due to food waste and economical losses, some fungal metabolites may furthermore have adverse effects on human health. The use of lactic acid bacteria (LAB) is emerging as a potential clean label alternative to chemical preservatives. Here, our aim was to characterize the growth potential at three storage temperatures (5, 16, and 25°C) of a panel of molds (four Mucor and nine Penicillium strains) isolated from dairy products, then investigate the susceptibility of the molds toward 12 LAB cultures. Fungal cell growth and morphology in malt extract broth was monitored using oCelloScope at 25°C for 24 h. Mucor plumbeus 01180036 was the fastest growing and Penicillium roqueforti ISI4 (P. roqueforti ISI4) the slowest of the tested molds. On yogurt-agar plates, all molds grew at 5, 16, and 25°C in a temperature-dependent manner with Mucor strains growing faster than Penicillium strains regardless of temperature. The sensitivity toward 12 LAB cultures was tested using high-throughput overlay method and here all the molds except P. roqueforti ISI4 were strongly inhibited. The antifungal action of these LAB was confirmed when spotting mold spores on agar plates containing live cells of the LAB strains. However, if cells were removed from the fermentates, the inhibitory effects decreased markedly. The antifungal effects of volatiles tested in a plate-on-plate system without direct contact between mold and LAB culture media were modest. Some LAB binary combinations improved the antifungal activity against the growth of several molds beyond that of single cultures in yogurt serum. The role of competitive exclusion due to manganese depletion was examined as a possible antifungal mechanism for six Penicillium and two Mucor strains. It was shown that this mechanism was a major inhibition factor for the molds tested apart from the non-inhibited P. roqueforti ISI4 since addition of manganese with increasing concentrations of up to 0.1 mM resulted in partly or fully restored mold growth in yogurt. These findings help to understand the parameters influencing the mold spoilage of dairy products and the interactions between the contaminating strains, substrate, and bioprotective LAB cultures.

收起

展开

DOI:

10.3389/fmicb.2021.631730

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(136)

参考文献(30)

引证文献(2)

来源期刊

Frontiers in Microbiology

影响因子:6.058

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读