MicroRNAs Expression Patterns Predict Tumor Mutational Burden in Colorectal Cancer.

来自 PUBMED

作者:

Huang JLiu HZhao YLuo TLiu JLiu JPan XTang W

展开

摘要:

Tumor mutational burden (TMB) could be a measure of response to immune checkpoint inhibitors therapy for patients with colorectal cancer (CRC). MicroRNAs (miRNAs) participate in anticancer immune responses. In the present study, we determined miRNA expression patterns in patients with CRC and built a signature that predicts TMB. Next generation sequencing (NGS) on formalin-fixed paraffin-embedded samples from CRC patients was performed to measure TMB levels. We used datasets from The Cancer Genome Atlas to compare miRNA expression patterns in samples with high and low TMB from patients with CRC. We created an miRNA-based signature index using the selection operator (LASSO) and least absolute shrinkage method from the training set. We used an independent test set as internal validation. We used real-time polymerase chain reaction (RT-PCR) to validate the miRNA-based signature classifier. Twenty-seven samples from CRC patients underwent NGS to determine the TMB level. We identified four miRNA candidates in the training set for predicting TMB (N = 311). We used the test set (N = 204) for internal validation. The four-miRNA-based signature classifier was an accurate predictor of TMB, with accuracy 0.963 in the training set. In the test set, it was 0.902; and it was 0.946 in the total set. The classifier was superior to microsatellite instability (MSI) for predicting TMB in TCGA dataset. In the validation cohort, MSI status more positively correlated with TMB levels than did the classifier. Validation from RT-qPCR showed good target discrimination of the classifier for TMB prediction. To our knowledge, this is the first miRNA-based signature classifier validated using high quality clinical data to accurately predict TMB level in patients with CRC.

收起

展开

DOI:

10.3389/fonc.2020.550986

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(98)

参考文献(42)

引证文献(4)

来源期刊

Frontiers in Oncology

影响因子:5.732

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读