Paravertebral anaesthesia with or without sedation versus general anaesthesia for women undergoing breast cancer surgery.
Breast cancer is one of the most common cancers among women. Surgical removal of the cancer is the mainstay of treatment; however, tumour handling during surgery can cause microscopic dissemination of tumour cells and disease recurrence. The body's hormonal response to surgery (stress response) and general anaesthesia may suppress immunity, promoting tumour dissemination. Paravertebral anaesthesia numbs the site of surgery, provides good analgesia, and blunts the stress response, minimising the need for general anaesthesia.
To assess the effects of paravertebral anaesthesia with or without sedation compared to general anaesthesia in women undergoing breast cancer surgery, with important outcomes of quality of recovery, postoperative pain at rest, and mortality.
On 6 April 2020, we searched the Specialised Register of the Cochrane Breast Cancer Group (CBCG); CENTRAL (latest issue), in the Cochrane Library; MEDLINE (via OvidSP); Embase (via OvidSP); the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) search portal; and ClinicalTrials.gov for all prospectively registered and ongoing trials.
We included randomised controlled trials (RCTs) conducted in adult women undergoing breast cancer surgery in which paravertebral anaesthesia with or without sedation was compared to general anaesthesia. We did not include studies in which paravertebral anaesthesia was given as an adjunct to general anaesthesia and then this was compared to use of general anaesthesia.
Two review authors independently extracted details of trial methods and outcome data from eligible trials. When data could be pooled, analyses were performed on an intention-to-treat basis, and the random-effects model was used if there was heterogeneity. When data could not be pooled, the synthesis without meta-analysis (SWiM) approach was applied. The GRADE approach was used to assess the certainty of evidence for each outcome.
Nine studies (614 participants) were included in the review. All were RCTs of parallel design, wherein female patients aged > 18 years underwent breast cancer surgery under paravertebral anaesthesia or general anaesthesia. None of the studies assessed quality of recovery in the first three postoperative days using a validated questionnaire; most assessed factors affecting quality of recovery such as postoperative analgesic use, postoperative nausea and vomiting (PONV), hospital stay, ambulation, and patient satisfaction. Paravertebral anaesthesia may reduce the 24-hour postoperative analgesic requirement (odds ratio (OR) 0.07, 95% confidence interval (CI) 0.01 to 0.34; 5 studies, 305 participants; low-certainty evidence) compared to general anaesthesia. Heterogeneity (I² = 70%) was attributed to the fixed dose of opioids and non-steroidal analgesics administered postoperatively in one study (70 participants), masking a difference in analgesic requirements between groups. Paravertebral anaesthesia probably reduces the incidence of PONV (OR 0.16, 95% CI 0.08 to 0.30; 6 studies, 324 participants; moderate-certainty evidence), probably results in a shorter hospital stay (mean difference (MD) -79.39 minutes, 95% CI -107.38 to -51.40; 3 studies, 174 participants; moderate-certainty evidence), and probably reduces time to ambulation compared to general anaesthesia (SWiM analysis): percentages indicate vote counting based on direction of effect (100%, 95% CI 51.01% to 100%; P = 0.125; 4 studies, 375 participants; moderate-certainty evidence). Paravertebral anaesthesia probably results in higher patient satisfaction (MD 5.52 points, 95% CI 1.30 to 9.75; 3 studies, 129 participants; moderate-certainty evidence) on a 0 to 100 scale 24 hours postoperatively compared to general anaesthesia. Postoperative pain at rest and on movement was assessed at 2, 6, and 24 postoperative hours on a 0 to 10 visual analogue scale (VAS). Four studies (224 participants) found that paravertebral anaesthesia as compared to general anaesthesia probably reduced pain at 2 postoperative hours (MD -2.95, 95% CI -3.37 to -2.54; moderate-certainty evidence). Five studies (324 participants) found that paravertebral anaesthesia may reduce pain at rest at 6 hours postoperatively (MD -1.54, 95% CI -3.20 to 0.11; low-certainty evidence). Five studies (278 participants) found that paravertebral anaesthesia may reduce pain at rest at 24 hours postoperatively (MD -1.19, 95% CI -2.27 to -0.10; low-certainty evidence). Differences in the methods of two studies (119 participants) and addition of clonidine to the local anaesthetic in two studies (109 participants), respectively, contributed to the heterogeneity (I² = 96%) observed for these two outcomes. Two studies (130 participants) found that paravertebral anaesthesia may reduce pain on movement at 6 hours (MD-2.57, 95% CI -3.97 to -1.17) and at 24 hours (MD -2.12, 95% CI -4.80 to 0.55; low-certainty evidence). Heterogeneity (I² = 96%) was observed for both outcomes and could be due to methodological differences between studies. None of the studies reported mortality related to the anaesthetic technique. Eight studies (574 participants) evaluated adverse outcomes with paravertebral anaesthesia: epidural spread (0.7%), minor bleeding (1.4%), pleural puncture not associated with pneumothorax (0.3%), and Horner's syndrome (7.1%). These complications were self-limiting and resolved without treatment. No data are available on disease-free survival, chronic pain, and quality of life. Blinding of personnel or participants was not possible in any study, as a regional anaesthetic technique was compared to general anaesthesia. Risk of bias was judged to be serious, as seven studies had concerns of selection bias and three of detection bias.
Moderate-certainty evidence shows that paravertebral anaesthesia probably reduces PONV, hospital stay, postoperative pain (at 2 hours), and time to ambulation and results in greater patient satisfaction on the first postoperative day compared to general anaesthesia. Paravertebral anaesthesia may also reduce postoperative analgesic use and postoperative pain at 6 and 24 hours at rest and on movement based on low-certainty evidence. However, RCTs using validated questionnaires are needed to confirm these results. Adverse events observed with paravertebral anaesthesia are rare.
Chhabra A
,Roy Chowdhury A
,Prabhakar H
,Subramaniam R
,Arora MK
,Srivastava A
,Kalaivani M
... -
《Cochrane Database of Systematic Reviews》
Erector spinae plane block for postoperative pain.
Acute and chronic postoperative pain are important healthcare problems, which can be treated with a combination of opioids and regional anaesthesia. The erector spinae plane block (ESPB) is a new regional anaesthesia technique, which might be able to reduce opioid consumption and related side effects.
To compare the analgesic effects and side effect profile of ESPB against no block, placebo block or other regional anaesthetic techniques.
We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase and Web of Science on 4 January 2021 and updated the search on 3 January 2022.
Randomised controlled trials (RCTs) investigating adults undergoing surgery with general anaesthesia were included. We included ESPB in comparison with no block, placebo blocks or other regional anaesthesia techniques irrespective of language, publication year, publication status or technique of regional anaesthesia used (ultrasound, landmarks or peripheral nerve stimulator). Quasi-RCTs, cluster-RCTs, cross-over trials and studies investigating co-interventions in either arm were excluded.
Two review authors independently assessed all trials for inclusion and exclusion criteria, and risk of bias (RoB), and extracted data. We assessed risk of bias using the Cochrane RoB 2 tool, and we used GRADE to rate the certainty of evidence for the primary outcomes. The primary outcomes were postoperative pain at rest at 24 hours and block-related adverse events. Secondary outcomes were postoperative pain at rest (2, 48 hours) and during activity (2, 24 and 48 hours after surgery), chronic pain after three and six months, as well as cumulative oral morphine requirements at 2, 24 and 48 hours after surgery and rates of opioid-related side effects.
We identified 69 RCTs in the first search and included these in the systematic review. We included 64 RCTs (3973 participants) in the meta-analysis. The outcome postoperative pain was reported in 38 out of 64 studies; block-related adverse events were reported in 40 out of 64 studies. We assessed RoB as low in 44 (56%), some concerns in 24 (31%) and high in 10 (13%) of the study results. Overall, 57 studies reported one or both primary outcomes. Only one study reported results on chronic pain after surgery. In the updated literature search on 3 January 2022 we found 37 new studies and categorised these as awaiting classification. ESPB compared to no block There is probably a slight but not clinically relevant reduction in pain intensity at rest 24 hours after surgery in patients treated with ESPB compared to no block (visual analogue scale (VAS), 0 to 10 points) (mean difference (MD) -0.77 points, 95% confidence interval (CI) -1.08 to -0.46; 17 trials, 958 participants; moderate-certainty evidence). There may be no difference in block-related adverse events between the groups treated with ESPB and those receiving no block (no events in 18 trials reported, 1045 participants, low-certainty evidence). ESPB compared to placebo block ESPB probably has no effect on postoperative pain intensity at rest 24 hours after surgery compared to placebo block (MD -0.14 points, 95% CI -0.29 to 0.00; 8 trials, 499 participants; moderate-certainty evidence). There may be no difference in block-related adverse events between ESPB and placebo blocks (no events in 10 trials reported; 592 participants; low-certainty evidence). ESPB compared to other regional anaesthetic techniques Paravertebral block (PVB) ESPB may not have any additional effect on postoperative pain intensity at rest 24 hours after surgery compared to PVB (MD 0.23 points, 95% CI -0.06 to 0.52; 7 trials, 478 participants; low-certainty evidence). There is probably no difference in block-related adverse events (risk ratio (RR) 0.27, 95% CI 0.08 to 0.95; 7 trials, 522 participants; moderate-certainty evidence). Transversus abdominis plane block (TAPB) ESPB may not have any additional effect on postoperative pain intensity at rest 24 hours after surgery compared to TAPB (MD -0.16 points, 95% CI -0.46 to 0.14; 3 trials, 160 participants; low-certainty evidence). There may be no difference in block-related adverse events (RR 1.00, 95% CI 0.21 to 4.83; 4 trials, 202 participants; low-certainty evidence). Serratus anterior plane block (SAPB) The effect on postoperative pain could not be assessed because no studies reported this outcome. There may be no difference in block-related adverse events (RR 1.00, 95% CI 0.06 to 15.59; 2 trials, 110 participants; low-certainty evidence). Pectoralis plane block (PECSB) ESPB may not have any additional effect on postoperative pain intensity at rest 24 hours after surgery compared to PECSB (MD 0.24 points, 95% CI -0.11 to 0.58; 2 trials, 98 participants; low-certainty evidence). The effect on block-related adverse events could not be assessed. Quadratus lumborum block (QLB) Only one study reported on each of the primary outcomes. Intercostal nerve block (ICNB) ESPB may not have any additional effect on postoperative pain intensity at rest 24 hours after surgery compared to ICNB, but this is uncertain (MD -0.33 points, 95% CI -3.02 to 2.35; 2 trials, 131 participants; very low-certainty evidence). There may be no difference in block-related adverse events, but this is uncertain (RR 0.09, 95% CI 0.04 to 2.28; 3 trials, 181 participants; very low-certainty evidence). Epidural analgesia (EA) We are uncertain whether ESPB has an effect on postoperative pain intensity at rest 24 hours after surgery compared to EA (MD 1.20 points, 95% CI -2.52 to 4.93; 2 trials, 81 participants; very low-certainty evidence). A risk ratio for block-related adverse events was not estimable because only one study reported this outcome.
ESPB in addition to standard care probably does not improve postoperative pain intensity 24 hours after surgery compared to no block. The number of block-related adverse events following ESPB was low. Further research is required to study the possibility of extending the duration of analgesia. We identified 37 new studies in the updated search and there are three ongoing studies, suggesting possible changes to the effect estimates and the certainty of the evidence in the future.
Oostvogels L
,Weibel S
,Meißner M
,Kranke P
,Meyer-Frießem CH
,Pogatzki-Zahn E
,Schnabel A
... -
《Cochrane Database of Systematic Reviews》
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.
Postoperative nausea and vomiting (PONV) is a common adverse effect of anaesthesia and surgery. Up to 80% of patients may be affected. These outcomes are a major cause of patient dissatisfaction and may lead to prolonged hospital stay and higher costs of care along with more severe complications. Many antiemetic drugs are available for prophylaxis. They have various mechanisms of action and side effects, but there is still uncertainty about which drugs are most effective with the fewest side effects.
• To compare the efficacy and safety of different prophylactic pharmacologic interventions (antiemetic drugs) against no treatment, against placebo, or against each other (as monotherapy or combination prophylaxis) for prevention of postoperative nausea and vomiting in adults undergoing any type of surgery under general anaesthesia • To generate a clinically useful ranking of antiemetic drugs (monotherapy and combination prophylaxis) based on efficacy and safety • To identify the best dose or dose range of antiemetic drugs in terms of efficacy and safety SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP), ClinicalTrials.gov, and reference lists of relevant systematic reviews. The first search was performed in November 2017 and was updated in April 2020. In the update of the search, 39 eligible studies were found that were not included in the analysis (listed as awaiting classification).
Randomized controlled trials (RCTs) comparing effectiveness or side effects of single antiemetic drugs in any dose or combination against each other or against an inactive control in adults undergoing any type of surgery under general anaesthesia. All antiemetic drugs belonged to one of the following substance classes: 5-HT₃ receptor antagonists, D₂ receptor antagonists, NK₁ receptor antagonists, corticosteroids, antihistamines, and anticholinergics. No language restrictions were applied. Abstract publications were excluded.
A review team of 11 authors independently assessed trials for inclusion and risk of bias and subsequently extracted data. We performed pair-wise meta-analyses for drugs of direct interest (amisulpride, aprepitant, casopitant, dexamethasone, dimenhydrinate, dolasetron, droperidol, fosaprepitant, granisetron, haloperidol, meclizine, methylprednisolone, metoclopramide, ondansetron, palonosetron, perphenazine, promethazine, ramosetron, rolapitant, scopolamine, and tropisetron) compared to placebo (inactive control). We performed network meta-analyses (NMAs) to estimate the relative effects and ranking (with placebo as reference) of all available single drugs and combinations. Primary outcomes were vomiting within 24 hours postoperatively, serious adverse events (SAEs), and any adverse event (AE). Secondary outcomes were drug class-specific side effects (e.g. headache), mortality, early and late vomiting, nausea, and complete response. We performed subgroup network meta-analysis with dose of drugs as a moderator variable using dose ranges based on previous consensus recommendations. We assessed certainty of evidence of NMA treatment effects for all primary outcomes and drug class-specific side effects according to GRADE (CINeMA, Confidence in Network Meta-Analysis). We restricted GRADE assessment to single drugs of direct interest compared to placebo.
We included 585 studies (97,516 randomized participants). Most of these studies were small (median sample size of 100); they were published between 1965 and 2017 and were primarily conducted in Asia (51%), Europe (25%), and North America (16%). Mean age of the overall population was 42 years. Most participants were women (83%), had American Society of Anesthesiologists (ASA) physical status I and II (70%), received perioperative opioids (88%), and underwent gynaecologic (32%) or gastrointestinal surgery (19%) under general anaesthesia using volatile anaesthetics (88%). In this review, 44 single drugs and 51 drug combinations were compared. Most studies investigated only single drugs (72%) and included an inactive control arm (66%). The three most investigated single drugs in this review were ondansetron (246 studies), dexamethasone (120 studies), and droperidol (97 studies). Almost all studies (89%) reported at least one efficacy outcome relevant for this review. However, only 56% reported at least one relevant safety outcome. Altogether, 157 studies (27%) were assessed as having overall low risk of bias, 101 studies (17%) overall high risk of bias, and 327 studies (56%) overall unclear risk of bias. Vomiting within 24 hours postoperatively Relative effects from NMA for vomiting within 24 hours (282 RCTs, 50,812 participants, 28 single drugs, and 36 drug combinations) suggest that 29 out of 36 drug combinations and 10 out of 28 single drugs showed a clinically important benefit (defined as the upper end of the 95% confidence interval (CI) below a risk ratio (RR) of 0.8) compared to placebo. Combinations of drugs were generally more effective than single drugs in preventing vomiting. However, single NK₁ receptor antagonists showed treatment effects similar to most of the drug combinations. High-certainty evidence suggests that the following single drugs reduce vomiting (ordered by decreasing efficacy): aprepitant (RR 0.26, 95% CI 0.18 to 0.38, high certainty, rank 3/28 of single drugs); ramosetron (RR 0.44, 95% CI 0.32 to 0.59, high certainty, rank 5/28); granisetron (RR 0.45, 95% CI 0.38 to 0.54, high certainty, rank 6/28); dexamethasone (RR 0.51, 95% CI 0.44 to 0.57, high certainty, rank 8/28); and ondansetron (RR 0.55, 95% CI 0.51 to 0.60, high certainty, rank 13/28). Moderate-certainty evidence suggests that the following single drugs probably reduce vomiting: fosaprepitant (RR 0.06, 95% CI 0.02 to 0.21, moderate certainty, rank 1/28) and droperidol (RR 0.61, 95% CI 0.54 to 0.69, moderate certainty, rank 20/28). Recommended and high doses of granisetron, dexamethasone, ondansetron, and droperidol showed clinically important benefit, but low doses showed no clinically important benefit. Aprepitant was used mainly at high doses, ramosetron at recommended doses, and fosaprepitant at doses of 150 mg (with no dose recommendation available). Frequency of SAEs Twenty-eight RCTs were included in the NMA for SAEs (10,766 participants, 13 single drugs, and eight drug combinations). The certainty of evidence for SAEs when using one of the best and most reliable anti-vomiting drugs (aprepitant, ramosetron, granisetron, dexamethasone, ondansetron, and droperidol compared to placebo) ranged from very low to low. Droperidol (RR 0.88, 95% CI 0.08 to 9.71, low certainty, rank 6/13) may reduce SAEs. We are uncertain about the effects of aprepitant (RR 1.39, 95% CI 0.26 to 7.36, very low certainty, rank 11/13), ramosetron (RR 0.89, 95% CI 0.05 to 15.74, very low certainty, rank 7/13), granisetron (RR 1.21, 95% CI 0.11 to 13.15, very low certainty, rank 10/13), dexamethasone (RR 1.16, 95% CI 0.28 to 4.85, very low certainty, rank 9/13), and ondansetron (RR 1.62, 95% CI 0.32 to 8.10, very low certainty, rank 12/13). No studies reporting SAEs were available for fosaprepitant. Frequency of any AE Sixty-one RCTs were included in the NMA for any AE (19,423 participants, 15 single drugs, and 11 drug combinations). The certainty of evidence for any AE when using one of the best and most reliable anti-vomiting drugs (aprepitant, ramosetron, granisetron, dexamethasone, ondansetron, and droperidol compared to placebo) ranged from very low to moderate. Granisetron (RR 0.92, 95% CI 0.80 to 1.05, moderate certainty, rank 7/15) probably has no or little effect on any AE. Dexamethasone (RR 0.77, 95% CI 0.55 to 1.08, low certainty, rank 2/15) and droperidol (RR 0.89, 95% CI 0.81 to 0.98, low certainty, rank 6/15) may reduce any AE. Ondansetron (RR 0.95, 95% CI 0.88 to 1.01, low certainty, rank 9/15) may have little or no effect on any AE. We are uncertain about the effects of aprepitant (RR 0.87, 95% CI 0.78 to 0.97, very low certainty, rank 3/15) and ramosetron (RR 1.00, 95% CI 0.65 to 1.54, very low certainty, rank 11/15) on any AE. No studies reporting any AE were available for fosaprepitant. Class-specific side effects For class-specific side effects (headache, constipation, wound infection, extrapyramidal symptoms, sedation, arrhythmia, and QT prolongation) of relevant substances, the certainty of evidence for the best and most reliable anti-vomiting drugs mostly ranged from very low to low. Exceptions were that ondansetron probably increases headache (RR 1.16, 95% CI 1.06 to 1.28, moderate certainty, rank 18/23) and probably reduces sedation (RR 0.87, 95% CI 0.79 to 0.96, moderate certainty, rank 5/24) compared to placebo. The latter effect is limited to recommended and high doses of ondansetron. Droperidol probably reduces headache (RR 0.76, 95% CI 0.67 to 0.86, moderate certainty, rank 5/23) compared to placebo. We have high-certainty evidence that dexamethasone (RR 1.00, 95% CI 0.91 to 1.09, high certainty, rank 16/24) has no effect on sedation compared to placebo. No studies assessed substance class-specific side effects for fosaprepitant. Direction and magnitude of network effect estimates together with level of evidence certainty are graphically summarized for all pre-defined GRADE-relevant outcomes and all drugs of direct interest compared to placebo in http://doi.org/10.5281/zenodo.4066353.
We found high-certainty evidence that five single drugs (aprepitant, ramosetron, granisetron, dexamethasone, and ondansetron) reduce vomiting, and moderate-certainty evidence that two other single drugs (fosaprepitant and droperidol) probably reduce vomiting, compared to placebo. Four of the six substance classes (5-HT₃ receptor antagonists, D₂ receptor antagonists, NK₁ receptor antagonists, and corticosteroids) were thus represented by at least one drug with important benefit for prevention of vomiting. Combinations of drugs were generally more effective than the corresponding single drugs in preventing vomiting. NK₁ receptor antagonists were the most effective drug class and had comparable efficacy to most of the drug combinations. 5-HT₃ receptor antagonists were the best studied substance class. For most of the single drugs of direct interest, we found only very low to low certainty evidence for safety outcomes such as occurrence of SAEs, any AE, and substance class-specific side effects. Recommended and high doses of granisetron, dexamethasone, ondansetron, and droperidol were more effective than low doses for prevention of vomiting. Dose dependency of side effects was rarely found due to the limited number of studies, except for the less sedating effect of recommended and high doses of ondansetron. The results of the review are transferable mainly to patients at higher risk of nausea and vomiting (i.e. healthy women undergoing inhalational anaesthesia and receiving perioperative opioids). Overall study quality was limited, but certainty assessments of effect estimates consider this limitation. No further efficacy studies are needed as there is evidence of moderate to high certainty for seven single drugs with relevant benefit for prevention of vomiting. However, additional studies are needed to investigate potential side effects of these drugs and to examine higher-risk patient populations (e.g. individuals with diabetes and heart disease).
Weibel S
,Rücker G
,Eberhart LH
,Pace NL
,Hartl HM
,Jordan OL
,Mayer D
,Riemer M
,Schaefer MS
,Raj D
,Backhaus I
,Helf A
,Schlesinger T
,Kienbaum P
,Kranke P
... -
《Cochrane Database of Systematic Reviews》