The pungent-variable sweet chili pepper 'Shishito' (Capsicum annuum) provides insights regarding the relationship between pungency, the number of seeds, and gene expression involving capsaicinoid biosynthesis.

来自 PUBMED

作者:

Kondo FHatakeyama KSakai AMinami MNemoto KMatsushima K

展开

摘要:

Pungent traits caused by capsaicinoids are characteristic of chili peppers (Capsicum spp.), and the pungent-variable sweet chili pepper 'Shishito' (Capsicum annuum) is unique in being known for the pungency in fruits with few seeds. In the present study, we tried to clarify the relationship between the number of seeds and pungency in 'Shishito'. First, we investigated the pungency of 'Shishito' by simple sensory evaluations and quantifications of capsaicinoids by high-performance liquid chromatography. As a result, few-seeded fruits had a larger fluctuation of capsaicinoid content than many-seeded ones. This indicates that the number of seeds, in particular a decrease of the seeds, has some sort of connection with the pungency of 'Shishito'. Then, we analyzed the relationship between pungency and gene expression involving capsaicinoid biosynthesis at the individual fruit level. We vertically separated the placental septum in which capsaicinoids are synthesized and performed quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for 18 genes involved in capsaicinoid biosynthesis. We also used the placental septum for capsaicinoid quantification so that the gene expression levels and capsaicinoid contents in the same fruits were obtained, and their correlations were analyzed using 20 biological replicates. Among the 18 genes, expression levels of 11 genes (WRKY9, CaMYB31, AT3, BCAT, BCKDH, KAS I, KAS III, ACL, CaKR1, FAT, and pAMT) had a significant positive correlation with the capsaicinoid concentration, and they were considered to upregulate capsaicinoid biosynthesis. These results provide new insights regarding the environmental variation of the pungency traits in chili peppers and the relationship between pungency, the number of seeds, and gene expression involved in capsaicinoid biosynthesis.

收起

展开

DOI:

10.1007/s00438-021-01763-4

被引量:

3

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(238)

参考文献(1)

引证文献(3)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读