-
Proofs for genotype by environment interactions considering pedigree and genomic data from organic and conventional cow reference populations.
The aim of the present study was to prove genotype by environment interactions (G × E) for production, longevity, and health traits considering conventional and organic German Holstein dairy cattle subpopulations. The full data set included 141,778 Holstein cows from 57 conventional herds and 7,915 cows from 9 organic herds. The analyzed traits were first-lactation milk yield and fat percentage (FP), the length of productive life (LPL) and the health traits mastitis, ovarian cycle disorders, and digital dermatitis in first lactation. A subset of phenotyped cows was genotyped and used for the implementation of separate cow reference populations. After SNP quality controls, the cow reference sets considered 40,830 SNP from 19,700 conventional cows and the same 40,830 SNP from 1,282 organic cows. The proof of possible G × E was made via multiple-trait model applications, considering same traits from the conventional and organic population as different traits. In this regard, pedigree (A), genomic (G) and combined relationship (H) matrices were constructed. For the production traits, heritabilities were very similar in both organic and conventional populations (i.e., close to 0.70 for FP and close to 0.40 for milk yield). For low heritability health traits and LPL, stronger heritability fluctuations were observed, especially for digital dermatitis with 0.05 ± 0.01 (organic, A matrix) to 0.33 ± 0.04 (conventional, G matrix). Quite large genetic correlations between same traits from the 2 environments were estimated for production traits, especially for high heritability FP. For LPL, the genetic correlation was 0.67 (A matrix) and 0.66 (H matrix). The genetic correlation between LPL organic with LPL conventional was 0.94 when considering the G matrix, but only 213 genotyped cows were included. For health traits, genetic correlations were throughout lower than 0.80, indicating possible G × E. Genetic correlations from the different matrices A, G, and H for health and production traits followed the same pattern, but the estimates from G for health traits were associated with quite large standard errors. In genome-wide association studies, significantly associated SNP for production traits overlapped in the conventional and organic population. In contrast, for low heritability LPL and health traits, significantly associated SNP and annotated potential candidate genes differed in both populations. In this regard, significantly associated SNP for mastitis from conventional cows were located on Bos taurus autosomes 6 and 19, but on Bos taurus autosomes 1, 10, and 22 in the organic population. For the remaining health traits and LPL, different potential candidate genes were annotated, but the different genes reflect similar physiological pathways. We found evidence of G × E for low heritability functional traits, suggesting different breeding approaches in organic and conventional populations. Nevertheless, for a verification of results and implementation of alternative breeding strategies, it is imperative to increase the organic cow reference population.
Shabalina T
,Yin T
,May K
,König S
... -
《-》
-
Genomic analyses of claw disorders in Holstein cows: Genetic parameters, trait associations, and genome-wide associations considering interactions of SNP and heat stress.
The aim of the present study was an in-depth genomic analysis to understand the genomic mechanisms of the 3 claw disorders dermatitis digitalis (DD), interdigital hyperplasia (HYP), and sole ulcer (SU). In this regard, we estimated genetic parameters based on genomic relationship matrices, performed genome-wide association studies, annotated potential candidate genes, and inferred genetic associations with breeding goal traits considering the most important chromosomal segments. As a further novelty of this study, we inferred possible SNP × heat stress interactions for claw disorders. The study consisted of 17,264 first-lactation Holstein Friesian cows kept in 50 large-scale contract herds. The disease prevalence was 15.96, 2.36, and 8.20% for DD, HYP, and SU, respectively. The remaining breeding goal traits consisted of type traits of the feet and leg composite, female fertility, health traits, and 305-d production traits. The final genotype data set included 44,474 SNPs from the 17,264 genotyped cows. Heritabilities for DD, HYP, and SU were estimated in linear and threshold models considering the genomic relationship matrix (G matrix). Genetic correlations with breeding goal traits based on G were estimated in a series of bivariate linear models, which were verified via SNP effect correlations for specific chromosome segments (i.e., segments harboring potential candidate genes for DD, HYP, and SU). Genome-wide association studies were performed for all traits in a case-control design by applying a single SNP linear mixed model. Furthermore, for DD, HYP, and SU, we modeled SNP × heat stress interactions in genome-wide association studies. Single nucleotide polymorphism-based heritabilities were 0.04 and 0.08 for DD, 0.03 and 0.10 for SU, and 0.03 and 0.23 for HYP from linear and threshold models, respectively. The genetic correlations between DD, HYP, and SU with conformation traits from the feet and leg composite were positive throughout, indicating the value of indirect selection on conformation traits to improve claw health. Genetic correlations between DD, SU, and HYP with other breeding goal traits indicated impaired female fertility, impaired udder health status, and productivity decline of diseased cows. Genetic correlations among DD, SU, and HYP were moderate to large, indicating that different claw disorders have similar genetic mechanisms. Nevertheless, we identified disease-specific potential candidate genes, and genetic associations based on the surrounding SNPs partly differed from the genetic correlations. Especially for candidate genes contributing to 2 traits simultaneously, correlations based on SNP effects from the respective chromosome segment were close to 1 or to -1. In this regard, we annotated the candidate genes KRT33A and KRT33B for HYP and DD, KIF27 for HYP and calving to first insemination, and MAN1A1 for SU and the production traits. For SNP × heat stress interactions, we identified significant SNPs on BTA 2, 4, 5, 7, 8, 9, 13, 22, 25, and 28, and we annotated the potential candidate genes FSIP2, CLCN1, ADGRV1, DOP1A, THBD, and RHOBTB1. Results indicate gene-specific mechanisms of the claw disorders only in specific environments.
Sölzer N
,May K
,Yin T
,König S
... -
《-》
-
Phenotypic relationships, genetic parameters, genome-wide associations, and identification of potential candidate genes for ketosis and fat-to-protein ratio in German Holstein cows.
Energy demand for milk production in early lactation exceeds energy intake, especially in high-yielding Holstein cows. Energy deficiency causes increasing susceptibility to metabolic disorders. In addition to several blood parameters, the fat-to-protein ratio (FPR) is suggested as an indicator for ketosis, because a FPR >1.5 refers to high lipolysis. The aim of this study was to analyze phenotypic, quantitative genetic, and genomic associations between FPR and ketosis. In this regard, 8,912 first-lactation Holstein cows were phenotyped for ketosis according to a veterinarian diagnosis key. Ketosis was diagnosed if the cow showed an abnormal carbohydrate metabolism with increased content of ketone bodies in the blood or urine. At least one entry for ketosis in the first 6 wk after calving implied a score = 1 (diseased); otherwise, a score = 0 (healthy) was assigned. The FPR from the first test-day was defined as a Gaussian distributed trait (FPRgauss), and also as a binary response trait (FPRbin), considering a threshold of FPR = 1.5. After imputation and quality controls, 45,613 SNP markers from the 8,912 genotyped cows were used for genomic studies. Phenotypically, an increasing ketosis incidence was associated with significantly higher FPR, and vice versa. Hence, from a practical trait recording perspective, first test-day FPR is suggested as an indicator for ketosis. The ketosis heritability was slightly larger when modeling the pedigree-based relationship matrix (pedigree-based: 0.17; SNP-based: 0.11). For FPRbin, heritabilities were larger when modeling the genomic relationship matrix (pedigree-based: 0.09; SNP-based: 0.15). For FPRgauss, heritabilities were almost identical for both pedigree and genomic relationship matrices (pedigree-based: 0.14; SNP-based: 0.15). Genetic correlations between ketosis with FPRbin and FPRgauss using either pedigree- or genomic-based relationship matrices were in a moderate range from 0.39 to 0.71. Applying genome-wide association studies, we identified the specific SNP rs109896020 (BTA 5, position: 115,456,438 bp) significantly contributing to ketosis. The identified potential candidate gene PARVB in close chromosomal distance is associated with nonalcoholic fatty liver disease in humans. The most important SNP contributing to FPRbin was located within the DGAT1 gene. Different SNP significantly contributed to ketosis and FPRbin, indicating different mechanisms for both traits genomically.
Klein SL
,Scheper C
,Brügemann K
,Swalve HH
,König S
... -
《-》
-
Survival analyses in Holstein cows considering direct disease diagnoses and specific SNP marker effects.
The aim of the present study was to infer influences of health disorders and of specific SNP markers on longevity in Holstein cows via survival analyses. Longevity was defined as the length of productive life (LPL), reflecting the interval from first calving until the culling or censoring date. In this regard, we considered longevity records from 129,386 Holstein cows from 57 large-scale herds, with calving dates in first parity between January 2004 and December 2017 (30.27% censored records). We selected specific diseases from the overall categories claw disorders, udder diseases, metabolic disorders, and female fertility disorders within 3 stages of parities 1, 2, and 3. Lactation stage 1 was the period from calving to days in milk (DIM) 59, lactation stage 2 from DIM 60 to DIM 299, and lactation stage 3 from DIM 300 to the next calving date. The effects of the diseases on culling risk ratios were estimated via Weibull proportional hazards models. In this regard, we used 3 different modeling strategies. In modeling strategy M1S, binary diseases from different parities and lactation stages for the same diagnosis were modeled as explanatory variables in separate runs. Modeling strategy M3S included diseases for the same diagnosis from stage 1, 2, and 3 in the same parity simultaneously. Modeling strategy M9S implied consideration of diseases for the same diagnosis from different lactation stages and from all 3 parities simultaneously. The effect of the same diseases on culling risks from M1S and M3S were similar, with increasing detrimental effect of diseases recorded in later lactation stages and parities. The strongest disease effect on LPL was detected for clinical and subclinical mastitis recorded in the middle of the third lactation, with culling risks of 2.59 and 2.40, respectively, and for claw disorders from the last stage in third lactation (culling risks in the range from 1.85 to 2.29). The effective (ignoring the proportion of censoring; heff2) and equivalent (considering proportion of censoring; hequ2) heritabilities for LPL when considering diseases from specific stages in parities 1 and 3 were quite low ( heff2 0.02 - 0.17; hequ2 0.01 - 0.12). Simultaneous consideration of same disease diagnoses across stages (M3S) and across lactations (M9S) contributed to a LPL heritability increase. Ignoring diseases as explanatory variables in survival analyses was generally associated with a decline of genetic LPL variances and LPL heritabilities. A genome-wide association study for LPL was based on estimated de-regressed proofs from 17,362 genotyped cows. Six SNP located on Bos taurus autosomes 1, 4, 10, 13, and 28 were significantly associated with LPL (using a 5% false discovery rate). Gene annotations via Ensembl identified the 4 potential candidate genes ETV1, ONECUT1, MACROD2, and SIRT1, which directly (via disease resistance mechanisms) or indirectly (via milk productivity) influence dairy cow longevity. Genotypes of the 6 significantly associated SNP were considered as fixed effects in Weibull hazards models, but their effects on culling risks were nonsignificant. Heritabilities for LPL from all SNP-based survival models considering the single SNP separately or the 6 SNP simultaneously were 0.05 (hequ2) and 0.12 (heff2). The small number of significantly associated SNP in genome-wide associations and the minor effect of specific SNP on LPL in survival analyses underline the polygenetic nature of longevity.
Shabalina T
,Yin T
,König S
《-》
-
Heritabilities and genetic correlations in the same traits across different strata of herds created according to continuous genomic, genetic, and phenotypic descriptors.
The most common approach in dairy cattle to prove genotype by environment interactions is a multiple-trait model application, and considering the same traits in different environments as different traits. We enhanced such concepts by defining continuous phenotypic, genetic, and genomic herd descriptors, and applying random regression sire models. Traits of interest were test-day traits for milk yield, fat percentage, protein percentage, and somatic cell score, considering 267,393 records from 32,707 first-lactation Holstein cows. Cows were born in the years 2010 to 2013, and kept in 52 large-scale herds from 2 federal states of north-east Germany. The average number of genotyped cows per herd (45,613 single nucleotide polymorphism markers per cow) was 133.5 (range: 45 to 415 genotyped cows). Genomic herd descriptors were (1) the level of linkage disequilibrium (r2) within specific chromosome segments, and (2) the average allele frequency for single nucleotide polymorphisms in close distance to a functional mutation. Genetic herd descriptors were the (1) intra-herd inbreeding coefficient, and (2) the percentage of daughters from foreign sires. Phenotypic herd descriptors were (1) herd size, and (2) the herd mean for nonreturn rate. Most correlations among herd descriptors were close to 0, indicating independence of genomic, genetic, and phenotypic characteristics. Heritabilities for milk yield increased with increasing intra-herd linkage disequilibrium, inbreeding, and herd size. Genetic correlations in same traits between adjacent levels of herd descriptors were close to 1, but declined for descriptor levels in greater distance. Genetic correlation declines were more obvious for somatic cell score, compared with test-day traits with larger heritabilities (fat percentage and protein percentage). Also, for milk yield, alterations of herd descriptor levels had an obvious effect on heritabilities and genetic correlations. By trend, multiple trait model results (based on created discrete herd classes) confirmed the random regression estimates. Identified alterations of breeding values in dependency of herd descriptors suggest utilization of specific sires for specific herd structures, offering new possibilities to improve sire selection strategies. Regarding genomic selection designs and genetic gain transfer into commercial herds, cow herds for the utilization in cow training sets should reflect the genomic, genetic, and phenotypic pattern of the broad population.
Yin T
,König S
《-》