Machine learning for early prediction of in-hospital cardiac arrest in patients with acute coronary syndromes.

来自 PUBMED

作者:

Wu TTLin XQMu YLi HGuo YS

展开

摘要:

Previous studies have used machine leaning to predict clinical deterioration to improve outcome prediction. However, no study has used machine learning to predict cardiac arrest in patients with acute coronary syndrome (ACS). Algorithms are required to generate high-performance models for predicting cardiac arrest in ACS patients with multivariate features. Machine learning algorithms will significantly improve outcome prediction of cardiac arrest in ACS patients. This retrospective cohort study reviewed 166 ACS patients who had in-hospital cardiac arrest. Eight machine learning algorithms were trained using multivariate clinical features obtained 24 h prior to the onset of cardiac arrest. All machine learning models were compared to each other and to existing risk prediction scores (Global Registry of Acute Coronary Events, National Early Warning Score, and Modified Early Warning Score) using the area under the receiver operating characteristic curve (AUROC). The XGBoost model provided the best performance with regard to AUC (0.958 [95%CI: 0.938-0.978]), accuracy (88.9%), sensitivity (73%), negative predictive value (89%), and F1 score (80%) compared with other machine learning models. The K-nearest neighbor model generated the best specificity (99.3%) and positive predictive value (93.8%) metrics, but had low and unacceptable values for sensitivity and AUC. Most, but not all, machine learning models outperformed the existing risk prediction scores. The XGBoost model, which was generated based on a machine learning algorithm, has high potential to be used to predict cardiac arrest in ACS patients. This proposed model significantly improves outcome prediction compared to existing risk prediction scores.

收起

展开

DOI:

10.1002/clc.23541

被引量:

10

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(273)

参考文献(24)

引证文献(10)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读