MLH1/PMS2-deficient Endometrial Carcinomas in a Universally Screened Population: MLH1 Hypermethylation and Germline Mutation Status.
摘要:
MLH1/PMS2 loss due to epigenetic hypermethylation of the MLH1 promoter is the most common cause of mismatch repair deficiency in endometrial carcinoma, and typically provides reassurance against an associated germline mutation. To further characterize the genetic features of MLH1/PMS2-deficient endometrial cancers, the departmental database was searched for cases with dual MLH1/PMS2 loss and retained MSH2/6 expression which underwent MLH1 hypermethylation testing. Genetic testing results were obtained when available. One hundred seventeen endometrial cancers met inclusion criteria: 100 (85%) were MLH1-hypermethylated, 3 (3%) were low-level/borderline, 7 (6%) were nonmethylated, and 7 (6%) were insufficient for testing. Sixteen cases (12 MLH1-hypermethylated, 3 nonmethylated, and 1 insufficient for testing) underwent germline testing, 6 of which (37.5%) demonstrated germline variants of unknown significance (VUS) (MSH6, PMS2, POLD1, BRIP1, RAD51D, CHEK2) but no known deleterious mutations. Notably, however, the patients harboring the MSH6 and PMS2 germline VUS had clinical features concerning for Lynch syndrome. One nonmethylated, germline-normal case underwent somatic tumor testing, and demonstrated a somatic MLH1 mutation. In summary, MLH1-hypermethylation accounts for the vast majority of MLH1/PMS2-deficient cancers in a universally screened population, although MLH1 somatic and germline mutations can occur. Occasionally, patients with MLH1-hypermethlated tumors also bear germline VUS in other mismatch repair genes as well as genes implicated in other hereditary cancer syndromes, but their clinical relevance is unclear. Family and personal cancer histories must always be evaluated to determine the need for germline testing in women with loss of MLH1/PMS2, even in the setting of hypermethylation.
收起
展开
DOI:
10.1097/PGP.0000000000000767
被引量:
年份:
2022


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(209)
参考文献(0)
引证文献(1)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无