An artificial intelligence-driven agent for real-time head-and-neck IMRT plan generation using conditional generative adversarial network (cGAN).

来自 PUBMED

作者:

Li XWang CSheng YZhang JWang WYin FFWu QWu QJGe Y

展开

摘要:

To develop an artificial intelligence (AI) agent for fully automated rapid head-and-neck intensity-modulated radiation therapy (IMRT) plan generation without time-consuming dose-volume-based inverse planning. This AI agent was trained via implementing a conditional generative adversarial network (cGAN) architecture. The generator, PyraNet, is a novel deep learning network that implements 28 classic ResNet blocks in pyramid-like concatenations. The discriminator is a customized four-layer DenseNet. The AI agent first generates multiple customized two-dimensional projections at nine template beam angles from a patient's three-dimensional computed tomography (CT) volume and structures. These projections are then stacked as four-dimensional inputs of PyraNet, from which nine radiation fluence maps of the corresponding template beam angles are generated simultaneously. Finally, the predicted fluence maps are automatically postprocessed by Gaussian deconvolution operations and imported into a commercial treatment planning system (TPS) for plan integrity check and visualization. The AI agent was built and tested upon 231 oropharyngeal IMRT plans from a TPS plan library. 200/16/15 plans were assigned for training/validation/testing, respectively. Only the primary plans in the sequential boost regime were studied. All plans were normalized to 44 Gy prescription (2 Gy/fx). A customized Harr wavelet loss was adopted for fluence map comparison during the training of the PyraNet. For test cases, isodose distributions in AI plans and TPS plans were qualitatively evaluated for overall dose distributions. Key dosimetric metrics were compared by Wilcoxon signed-rank tests with a significance level of 0.05. All 15 AI plans were successfully generated. Isodose gradients outside of PTV in AI plans were comparable to those of the TPS plans. After PTV coverage normalization, Dmean of left parotid (DAI  = 23.1 ± 2.4 Gy; DTPS  = 23.1 ± 2.0 Gy), right parotid (DAI  = 23.8 ± 3.0 Gy; DTPS  = 23.9 ± 2.3 Gy), and oral cavity (DAI  = 24.7 ± 6.0 Gy; DTPS  = 23.9 ± 4.3 Gy) in the AI plans and the TPS plans were comparable without statistical significance. AI plans achieved comparable results for maximum dose at 0.01cc of brainstem (DAI  = 15.0 ± 2.1 Gy; DTPS  = 15.5 ± 2.7 Gy) and cord + 5mm (DAI  = 27.5 ± 2.3 Gy; DTPS  = 25.8 ± 1.9 Gy) without clinically relevant differences, but body Dmax results (DAI  = 121.1 ± 3.9 Gy; DTPS  = 109.0 ± 0.9 Gy) were higher than the TPS plan results. The AI agent needed ~3 s for predicting fluence maps of an IMRT plan. With rapid and fully automated execution, the developed AI agent can generate complex head-and-neck IMRT plans with acceptable dosimetry quality. This approach holds great potential for clinical applications in preplanning decision-making and real-time planning.

收起

展开

DOI:

10.1002/mp.14770

被引量:

13

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(538)

参考文献(0)

引证文献(13)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读