From clinical decision support to clinical reasoning support systems.

来自 PUBMED

作者:

van Baalen SBoon MVerhoef P

展开

摘要:

Despite the great promises that artificial intelligence (AI) holds for health care, the uptake of such technologies into medical practice is slow. In this paper, we focus on the epistemological issues arising from the development and implementation of a class of AI for clinical practice, namely clinical decision support systems (CDSS). We will first provide an overview of the epistemic tasks of medical professionals, and then analyse which of these tasks can be supported by CDSS, while also explaining why some of them should remain the territory of human experts. Clinical decision making involves a reasoning process in which clinicians combine different types of information into a coherent and adequate 'picture of the patient' that enables them to draw explainable and justifiable conclusions for which they bear epistemological responsibility. Therefore, we suggest that it is more appropriate to think of a CDSS as clinical reasoning support systems (CRSS). Developing CRSS that support clinicians' reasoning process therefore requires that: (a) CRSSs are developed on the basis of relevant and well-processed data; and (b) the system facilitates an interaction with the clinician. Therefore, medical experts must collaborate closely with AI experts developing the CRSS. In addition, responsible use of an CRSS requires that the data generated by the CRSS is empirically justified through an empirical link with the individual patient. In practice, this means that the system indicates what factors contributed to arriving at an advice, allowing the user (clinician) to evaluate whether these factors are medically plausible and applicable to the patient. Finally, we defend that proper implementation of CRSS allows combining human and artificial intelligence into hybrid intelligence, were both perform clearly delineated and complementary empirical tasks. Whereas CRSSs can assist with statistical reasoning and finding patterns in complex data, it is the clinicians' task to interpret, integrate and contextualize.

收起

展开

DOI:

10.1111/jep.13541

被引量:

16

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(106)

参考文献(14)

引证文献(16)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读