Tumour microenvironment-based molecular profiling reveals ideal candidates for high-grade serous ovarian cancer immunotherapy.

来自 PUBMED

作者:

Lu XJi CJiang LZhu YZhou YMeng JGao JLu TYe JYan F

展开

摘要:

Due to limited immunological profiles of high-grade serous ovarian cancer (HGSOC), we aimed to characterize its molecular features to determine whether a specific subset that can respond to immunotherapy exists. A training cohort of 418 HGSOC samples from TCGA was analysed by consensus non-negative matrix factorization. We correlated the expression patterns with the presence of immune cell infiltrates, immune regulatory molecules and other genomic or epigenetic features. Two independent cohorts containing 482 HGSOCs and in vitro experiments were used for validation. We identified immune and non-immune groups where the former was enriched in signatures that reflect immune cells, infiltration and PD-1 signalling (all, P < 0.001), and presented with a lower chromosomal aberrations but increased neoantigens, tumour mutation burden, and microsatellite instability (all, P < 0.05); this group was further refined into two microenvironment-based subtypes characterized by either immunoactivation or carcinoma-associated fibroblasts (CAFs) and distinct prognosis. CAFs-immune subtype was enriched for factors that mediate immunosuppression and promote tumour progression, including highly expressed stromal signature, TGF-β signalling, epithelial-mesenchymal transition and tumour-associated M2-polarized macrophages (all, P < 0.001). Robustness of these immune-specific subtypes was verified in validation cohorts, and in vitro experiments indicated that activated-immune subtype may benefit from anti-PD1 antibody therapy (P < 0.05). Our findings revealed two immune subtypes with different responses to immunotherapy and indicated that some HGSOCs may be susceptible to immunotherapies or combination therapies.

收起

展开

DOI:

10.1111/cpr.12979

被引量:

11

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(328)

参考文献(27)

引证文献(11)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读