Computational study on peptidomimetic inhibitors against SARS-CoV-2 main protease.

来自 PUBMED

作者:

Somboon TMahalapbutr PSanachai KMaitarad PLee VSHannongbua SRungrotmongkol T

展开

摘要:

The emergence outbreak caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has received significant attention on the global risks. Due to itscrucial role in viral replication, the main protease 3CLpro is an important target for drug discovery and development to combat COVID-19. In this work, the structural and dynamic behaviors as well as binding efficiency of the four peptidomimetic inhibitors (N3, 11a, 13b, and 14b) recently co-crystalized with SARS-CoV-2 3CLpro were studied and compared using all-atom molecular dynamics (MD) simulations and solvated interaction energy-based binding free energy calculations. The per-residue decomposition free energy results suggested that the key residues involved in inhibitors binding were H41, M49, L141-C145, H163-E166, P168, and Q189-T190 in the domains I and II. The van der Waals interaction yielded the main energy contribution stabilizing all the focused inhibitors. Besides, their hydrogen bond formations with F140, G143, C145, H164, E166, and Q189 residues in the substrate-binding pocket were also essential for strengthening the molecular complexation. The predicted binding affinity of the four peptidomimetic inhibitors agreed with the reported experimental data, and the 13b showed the most efficient binding to SARS-CoV-2 3CLpro. From rational drug design strategies based on 13b, the polar moieties (e.g., benzamide) and the bulky N-terminal protecting groups (e.g., thiazole) should be introduced to P1' and P4 sites in order to enhance H-bonds and hydrophobic interactions, respectively. We hope that the obtained structural and energetic information could be beneficial for developing novel SARS-CoV-2 3CLpro inhibitors with higher inhibitory potency to combat COVID-19.

收起

展开

DOI:

10.1016/j.molliq.2020.114999

被引量:

15

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(79)

参考文献(47)

引证文献(15)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读