[Antifibrotic therapy - new approvals for non-IPF interstitial lung diseases].

来自 PUBMED

作者:

Markart PDrakopanagiotakis FWygrecka M

展开

摘要:

Interstitial lung diseases (ILD) encompass more than 200 disorders of known and unknow etiology. Until recently, the antifibrotic drugs nintedanib and pirfenidone had only been approved for the treatment of idiopathic pulmonary fibrosis (IPF), but not for other ILD. In the randomized, double-blind, placebo-controlled SENSCIS trial, the efficacy and safety of nintedanib was investigated in patients with ILD associated with systemic sclerosis (SSc-ILD). Nintedanib significantly reduced the annual rate of decline in FVC compared with placebo leading to the approval of nintedanib for the treatment of SSc-ILD. Very recently, nintedanib has got approval for chronic fibrosing ILD with a progressive phenotype based on the data from the INBUILD trial. In this randomized, double-blind, placebo-controlled, phase III trial, patients with chronic hypersensitivity pneumonitis, idiopathic non-specific interstitial pneumonia, unclassifiable ILD, autoimmune ILD, sarcoidosis, and others were included, and nintedanib slowed the annual decline of pulmonary function by 57 % in these patients. Promising data are also available for pirfenidone in the treatment of patients with progressive, non-IPF lung fibrosis and unclassifiable progressive fibrosing ILD. In this article, we summarize the new approvals of antifibrotic drugs in non-IPF ILD, the results from the underlying clinical trials and the clinical implications.

收起

展开

DOI:

10.1055/a-1239-3728

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(292)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读