Universal screening for SARS-CoV-2 infection: a rapid review.
Coronavirus disease 2019 (COVID-19) is caused by the novel betacoronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Most people infected with SARS-CoV-2 have mild disease with unspecific symptoms, but about 5% become critically ill with respiratory failure, septic shock and multiple organ failure. An unknown proportion of infected individuals never experience COVID-19 symptoms although they are infectious, that is, they remain asymptomatic. Those who develop the disease, go through a presymptomatic period during which they are infectious. Universal screening for SARS-CoV-2 infections to detect individuals who are infected before they present clinically, could therefore be an important measure to contain the spread of the disease.
We conducted a rapid review to assess (1) the effectiveness of universal screening for SARS-CoV-2 infection compared with no screening and (2) the accuracy of universal screening in people who have not presented to clinical care for symptoms of COVID-19.
An information specialist searched Ovid MEDLINE and the Centers for Disease Control (CDC) COVID-19 Research Articles Downloadable Database up to 26 May 2020. We searched Embase.com, the CENTRAL, and the Cochrane Covid-19 Study Register on 14 April 2020. We searched LitCovid to 4 April 2020. The World Health Organization (WHO) provided records from daily searches in Chinese databases and in PubMed up to 15 April 2020. We also searched three model repositories (Covid-Analytics, Models of Infectious Disease Agent Study [MIDAS], and Society for Medical Decision Making) on 8 April 2020.
Trials, observational studies, or mathematical modelling studies assessing screening effectiveness or screening accuracy among general populations in which the prevalence of SARS-CoV2 is unknown.
After pilot testing review forms, one review author screened titles and abstracts. Two review authors independently screened the full text of studies and resolved any disagreements by discussion with a third review author. Abstracts excluded by a first review author were dually reviewed by a second review author prior to exclusion. One review author independently extracted data, which was checked by a second review author for completeness and accuracy. Two review authors independently rated the quality of included studies using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool for diagnostic accuracy studies and a modified form designed originally for economic evaluations for modelling studies. We resolved differences by consensus. We synthesized the evidence in narrative and tabular formats. We rated the certainty of evidence for days to outbreak, transmission, cases missed and detected, diagnostic accuracy (i.e. true positives, false positives, true negatives, false negatives) using the GRADE approach.
We included 22 publications. Two modelling studies reported on effectiveness of universal screening. Twenty studies (17 cohort studies and 3 modelling studies) reported on screening test accuracy. Effectiveness of screening We included two modelling studies. One study suggests that symptom screening at travel hubs, such as airports, may slightly slow but not stop the importation of infected cases (assuming 10 or 100 infected travellers per week reduced the delay in a local outbreak to 8 days or 1 day, respectively). We assessed risk of bias as minor or no concerns, and certainty of evidence was low, downgraded for very serious indirectness. The second modelling study provides very low-certainty evidence that screening of healthcare workers in emergency departments using laboratory tests may reduce transmission to patients and other healthcare workers (assuming a transmission constant of 1.2 new infections per 10,000 people, weekly screening reduced infections by 5.1% within 30 days). The certainty of evidence was very low, downgraded for high risk of bias (major concerns) and indirectness. No modelling studies reported on harms of screening. Screening test accuracy All 17 cohort studies compared an index screening strategy to a reference reverse transcriptase polymerase chain reaction (RT-PCR) test. All but one study reported on the accuracy of single point-in-time screening and varied widely in prevalence of SARS-CoV-2, settings, and methods of measurement. We assessed the overall risk of bias as unclear in 16 out of 17 studies, mainly due to limited information on the index test and reference standard. We rated one study as being at high risk of bias due to the inclusion of two separate populations with likely different prevalences. For several screening strategies, the estimates of sensitivity came from small samples. For single point-in-time strategies, for symptom assessment, the sensitivity from 12 cohorts (524 people) ranged from 0.00 to 0.60 (very low-certainty evidence) and the specificity from 12 cohorts (16,165 people) ranged from 0.66 to 1.00 (low-certainty evidence). For screening using direct temperature measurement (3 cohorts, 822 people), international travel history (2 cohorts, 13,080 people), or exposure to known infected people (3 cohorts, 13,205 people) or suspected infected people (2 cohorts, 954 people), sensitivity ranged from 0.00 to 0.23 (very low- to low-certainty evidence) and specificity ranged from 0.90 to 1.00 (low- to moderate-certainty evidence). For symptom assessment plus direct temperature measurement (2 cohorts, 779 people), sensitivity ranged from 0.12 to 0.69 (very low-certainty evidence) and specificity from 0.90 to 1.00 (low-certainty evidence). For rapid PCR test (1 cohort, 21 people), sensitivity was 0.80 (95% confidence interval (CI) 0.44 to 0.96; very low-certainty evidence) and specificity was 0.73 (95% CI 0.39 to 0.94; very low-certainty evidence). One cohort (76 people) reported on repeated screening with symptom assessment and demonstrates a sensitivity of 0.44 (95% CI 0.29 to 0.59; very low-certainty evidence) and specificity of 0.62 (95% CI 0.42 to 0.79; low-certainty evidence). Three modelling studies evaluated the accuracy of screening at airports. The main outcomes measured were cases missed or detected by entry or exit screening, or both, at airports. One study suggests very low sensitivity at 0.30 (95% CI 0.1 to 0.53), missing 70% of infected travellers. Another study described an unrealistic scenario to achieve a 90% detection rate, requiring 0% asymptomatic infections. The final study provides very uncertain evidence due to low methodological quality.
The evidence base for the effectiveness of screening comes from two mathematical modelling studies and is limited by their assumptions. Low-certainty evidence suggests that screening at travel hubs may slightly slow the importation of infected cases. This review highlights the uncertainty and variation in accuracy of screening strategies. A high proportion of infected individuals may be missed and go on to infect others, and some healthy individuals may be falsely identified as positive, requiring confirmatory testing and potentially leading to the unnecessary isolation of these individuals. Further studies need to evaluate the utility of rapid laboratory tests, combined screening, and repeated screening. More research is also needed on reference standards with greater accuracy than RT-PCR. Given the poor sensitivity of existing approaches, our findings point to the need for greater emphasis on other ways that may prevent transmission such as face coverings, physical distancing, quarantine, and adequate personal protective equipment for frontline workers.
Viswanathan M
,Kahwati L
,Jahn B
,Giger K
,Dobrescu AI
,Hill C
,Klerings I
,Meixner J
,Persad E
,Teufer B
,Gartlehner G
... -
《Cochrane Database of Systematic Reviews》
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
Description of the condition Malaria, an infectious disease transmitted by the bite of female mosquitoes from several Anopheles species, occurs in 87 countries with ongoing transmission (WHO 2020). The World Health Organization (WHO) estimated that, in 2019, approximately 229 million cases of malaria occurred worldwide, with 94% occurring in the WHO's African region (WHO 2020). Of these malaria cases, an estimated 409,000 deaths occurred globally, with 67% occurring in children under five years of age (WHO 2020). Malaria also negatively impacts the health of women during pregnancy, childbirth, and the postnatal period (WHO 2020). Sulfadoxine/pyrimethamine (SP), an antifolate antimalarial, has been widely used across sub-Saharan Africa as the first-line treatment for uncomplicated malaria since it was first introduced in Malawi in 1993 (Filler 2006). Due to increasing resistance to SP, in 2000 the WHO recommended that one of several artemisinin-based combination therapies (ACTs) be used instead of SP for the treatment of uncomplicated malaria caused by Plasmodium falciparum (Global Partnership to Roll Back Malaria 2001). However, despite these recommendations, SP continues to be advised for intermittent preventive treatment in pregnancy (IPTp) and intermittent preventive treatment in infants (IPTi), whether the person has malaria or not (WHO 2013). Description of the intervention Folate (vitamin B9) includes both naturally occurring folates and folic acid, the fully oxidized monoglutamic form of the vitamin, used in dietary supplements and fortified food. Folate deficiency (e.g. red blood cell (RBC) folate concentrations of less than 305 nanomoles per litre (nmol/L); serum or plasma concentrations of less than 7 nmol/L) is common in many parts of the world and often presents as megaloblastic anaemia, resulting from inadequate intake, increased requirements, reduced absorption, or abnormal metabolism of folate (Bailey 2015; WHO 2015a). Pregnant women have greater folate requirements; inadequate folate intake (evidenced by RBC folate concentrations of less than 400 nanograms per millilitre (ng/mL), or 906 nmol/L) prior to and during the first month of pregnancy increases the risk of neural tube defects, preterm delivery, low birthweight, and fetal growth restriction (Bourassa 2019). The WHO recommends that all women who are trying to conceive consume 400 micrograms (µg) of folic acid daily from the time they begin trying to conceive through to 12 weeks of gestation (WHO 2017). In 2015, the WHO added the dosage of 0.4 mg of folic acid to the essential drug list (WHO 2015c). Alongside daily oral iron (30 mg to 60 mg elemental iron), folic acid supplementation is recommended for pregnant women to prevent neural tube defects, maternal anaemia, puerperal sepsis, low birthweight, and preterm birth in settings where anaemia in pregnant women is a severe public health problem (i.e. where at least 40% of pregnant women have a blood haemoglobin (Hb) concentration of less than 110 g/L). How the intervention might work Potential interactions between folate status and malaria infection The malaria parasite requires folate for survival and growth; this has led to the hypothesis that folate status may influence malaria risk and severity. In rhesus monkeys, folate deficiency has been found to be protective against Plasmodium cynomolgi malaria infection, compared to folate-replete animals (Metz 2007). Alternatively, malaria may induce or exacerbate folate deficiency due to increased folate utilization from haemolysis and fever. Further, folate status measured via RBC folate is not an appropriate biomarker of folate status in malaria-infected individuals since RBC folate values in these individuals are indicative of both the person's stores and the parasite's folate synthesis. A study in Nigeria found that children with malaria infection had significantly higher RBC folate concentrations compared to children without malaria infection, but plasma folate levels were similar (Bradley-Moore 1985). Why it is important to do this review The malaria parasite needs folate for survival and growth in humans. For individuals, adequate folate levels are critical for health and well-being, and for the prevention of anaemia and neural tube defects. Many countries rely on folic acid supplementation to ensure adequate folate status in at-risk populations. Different formulations for folic acid supplements are available in many international settings, with dosages ranging from 400 µg to 5 mg. Evaluating folic acid dosage levels used in supplementation efforts may increase public health understanding of its potential impacts on malaria risk and severity and on treatment failures. Examining folic acid interactions with antifolate antimalarial medications and with malaria disease progression may help countries in malaria-endemic areas determine what are the most appropriate lower dose folic acid formulations for at-risk populations. The WHO has highlighted the limited evidence available and has indicated the need for further research on biomarkers of folate status, particularly interactions between RBC folate concentrations and tuberculosis, human immunodeficiency virus (HIV), and antifolate antimalarial drugs (WHO 2015b). An earlier Cochrane Review assessed the effects and safety of iron supplementation, with or without folic acid, in children living in hyperendemic or holoendemic malaria areas; it demonstrated that iron supplementation did not increase the risk of malaria, as indicated by fever and the presence of parasites in the blood (Neuberger 2016). Further, this review stated that folic acid may interfere with the efficacy of SP; however, the efficacy and safety of folic acid supplementation on these outcomes has not been established. This review will provide evidence on the effectiveness of daily folic acid supplementation in healthy and malaria-infected individuals living in malaria-endemic areas. Additionally, it will contribute to achieving both the WHO Global Technical Strategy for Malaria 2016-2030 (WHO 2015d), and United Nations Sustainable Development Goal 3 (to ensure healthy lives and to promote well-being for all of all ages) (United Nations 2021), and evaluating whether the potential effects of folic acid supplementation, at different doses (e.g. 0.4 mg, 1 mg, 5 mg daily), interferes with the effect of drugs used for prevention or treatment of malaria.
To examine the effects of folic acid supplementation, at various doses, on malaria susceptibility (risk of infection) and severity among people living in areas with various degrees of malaria endemicity. We will examine the interaction between folic acid supplements and antifolate antimalarial drugs. Specifically, we will aim to answer the following. Among uninfected people living in malaria endemic areas, who are taking or not taking antifolate antimalarials for malaria prophylaxis, does taking a folic acid-containing supplement increase susceptibility to or severity of malaria infection? Among people with malaria infection who are being treated with antifolate antimalarials, does folic acid supplementation increase the risk of treatment failure?
Criteria for considering studies for this review Types of studies Inclusion criteria Randomized controlled trials (RCTs) Quasi-RCTs with randomization at the individual or cluster level conducted in malaria-endemic areas (areas with ongoing, local malaria transmission, including areas approaching elimination, as listed in the World Malaria Report 2020) (WHO 2020) Exclusion criteria Ecological studies Observational studies In vivo/in vitro studies Economic studies Systematic literature reviews and meta-analyses (relevant systematic literature reviews and meta-analyses will be excluded but flagged for grey literature screening) Types of participants Inclusion criteria Individuals of any age or gender, living in a malaria endemic area, who are taking antifolate antimalarial medications (including but not limited to sulfadoxine/pyrimethamine (SP), pyrimethamine-dapsone, pyrimethamine, chloroquine and proguanil, cotrimoxazole) for the prevention or treatment of malaria (studies will be included if more than 70% of the participants live in malaria-endemic regions) Studies assessing participants with or without anaemia and with or without malaria parasitaemia at baseline will be included Exclusion criteria Individuals not taking antifolate antimalarial medications for prevention or treatment of malaria Individuals living in non-malaria endemic areas Types of interventions Inclusion criteria Folic acid supplementation Form: in tablet, capsule, dispersible tablet at any dose, during administration, or periodically Timing: during, before, or after (within a period of four to six weeks) administration of antifolate antimalarials Iron-folic acid supplementation Folic acid supplementation in combination with co-interventions that are identical between the intervention and control groups. Co-interventions include: anthelminthic treatment; multivitamin or multiple micronutrient supplementation; 5-methyltetrahydrofolate supplementation. Exclusion criteria Folate through folate-fortified water Folic acid administered through large-scale fortification of rice, wheat, or maize Comparators Placebo No treatment No folic acid/different doses of folic acid Iron Types of outcome measures Primary outcomes Uncomplicated malaria (defined as a history of fever with parasitological confirmation; acceptable parasitological confirmation will include rapid diagnostic tests (RDTs), malaria smears, or nucleic acid detection (i.e. polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), etc.)) (WHO 2010). This outcome is relevant for patients without malaria, given antifolate antimalarials for malaria prophylaxis. Severe malaria (defined as any case with cerebral malaria or acute P. falciparum malaria, with signs of severity or evidence of vital organ dysfunction, or both) (WHO 2010). This outcome is relevant for patients without malaria, given antifolate antimalarials for malaria prophylaxis. Parasite clearance (any Plasmodium species), defined as the time it takes for a patient who tests positive at enrolment and is treated to become smear-negative or PCR negative. This outcome is relevant for patients with malaria, treated with antifolate antimalarials. Treatment failure (defined as the inability to clear malaria parasitaemia or prevent recrudescence after administration of antimalarial medicine, regardless of whether clinical symptoms are resolved) (WHO 2019). This outcome is relevant for patients with malaria, treated with antifolate antimalarials. Secondary outcomes Duration of parasitaemia Parasite density Haemoglobin (Hb) concentrations (g/L) Anaemia: severe anaemia (defined as Hb less than 70 g/L in pregnant women and children aged six to 59 months; and Hb less than 80 g/L in other populations); moderate anaemia (defined as Hb less than 100 g/L in pregnant women and children aged six to 59 months; and less than 110 g/L in others) Death from any cause Among pregnant women: stillbirth (at less than 28 weeks gestation); low birthweight (less than 2500 g); active placental malaria (defined as Plasmodium detected in placental blood by smear or PCR, or by Plasmodium detected on impression smear or placental histology). Search methods for identification of studies A search will be conducted to identify completed and ongoing studies, without date or language restrictions. Electronic searches A search strategy will be designed to include the appropriate subject headings and text word terms related to each intervention of interest and study design of interest (see Appendix 1). Searches will be broken down by these two criteria (intervention of interest and study design of interest) to allow for ease of prioritization, if necessary. The study design filters recommended by the Scottish Intercollegiate Guidelines Network (SIGN), and those designed by Cochrane for identifying clinical trials for MEDLINE and Embase, will be used (SIGN 2020). There will be no date or language restrictions. Non-English articles identified for inclusion will be translated into English. If translations are not possible, advice will be requested from the Cochrane Infectious Diseases Group and the record will be stored in the "Awaiting assessment" section of the review until a translation is available. The following electronic databases will be searched for primary studies. Cochrane Central Register of Controlled Trials. Cumulative Index to Nursing and Allied Health Literature (CINAHL). Embase. MEDLINE. Scopus. Web of Science (both the Social Science Citation Index and the Science Citation Index). We will conduct manual searches of ClinicalTrials.gov, the International Clinical Trials Registry Platform (ICTRP), and the United Nations Children's Fund (UNICEF) Evaluation and Research Database (ERD), in order to identify relevant ongoing or planned trials, abstracts, and full-text reports of evaluations, studies, and surveys related to programmes on folic acid supplementation in malaria-endemic areas. Additionally, manual searches of grey literature to identify RCTs that have not yet been published but are potentially eligible for inclusion will be conducted in the following sources. Global Index Medicus (GIM). African Index Medicus (AIM). Index Medicus for the Eastern Mediterranean Region (IMEMR). Latin American & Caribbean Health Sciences Literature (LILACS). Pan American Health Organization (PAHO). Western Pacific Region Index Medicus (WPRO). Index Medicus for the South-East Asian Region (IMSEAR). The Spanish Bibliographic Index in Health Sciences (IBECS) (ibecs.isciii.es/). Indian Journal of Medical Research (IJMR) (journals.lww.com/ijmr/pages/default.aspx). Native Health Database (nativehealthdatabase.net/). Scielo (www.scielo.br/). Searching other resources Handsearches of the five journals with the highest number of included studies in the last 12 months will be conducted to capture any relevant articles that may not have been indexed in the databases at the time of the search. We will contact the authors of included studies and will check reference lists of included papers for the identification of additional records. For assistance in identifying ongoing or unpublished studies, we will contact the Division of Nutrition, Physical Activity, and Obesity (DNPAO) and the Division of Parasitic Diseases and Malaria (DPDM) of the CDC, the United Nations World Food Programme (WFP), Nutrition International (NI), Global Alliance for Improved Nutrition (GAIN), and Hellen Keller International (HKI). Data collection and analysis Selection of studies Two review authors will independently screen the titles and abstracts of articles retrieved by each search to assess eligibility, as determined by the inclusion and exclusion criteria. Studies deemed eligible for inclusion by both review authors in the abstract screening phase will advance to the full-text screening phase, and full-text copies of all eligible papers will be retrieved. If full articles cannot be obtained, we will attempt to contact the authors to obtain further details of the studies. If such information is not obtained, we will classify the study as "awaiting assessment" until further information is published or made available to us. The same two review authors will independently assess the eligibility of full-text articles for inclusion in the systematic review. If any discrepancies occur between the studies selected by the two review authors, a third review author will provide arbitration. Each trial will be scrutinized to identify multiple publications from the same data set, and the justification for excluded trials will be documented. A PRISMA flow diagram of the study selection process will be presented to provide information on the number of records identified in the literature searches, the number of studies included and excluded, and the reasons for exclusion (Moher 2009). The list of excluded studies, along with their reasons for exclusion at the full-text screening phase, will also be created. Data extraction and management Two review authors will independently extract data for the final list of included studies using a standardized data specification form. Discrepancies observed between the data extracted by the two authors will be resolved by involving a third review author and reaching a consensus. Information will be extracted on study design components, baseline participant characteristics, intervention characteristics, and outcomes. For individually randomized trials, we will record the number of participants experiencing the event and the number analyzed in each treatment group or the effect estimate reported (e.g. risk ratio (RR)) for dichotomous outcome measures. For count data, we will record the number of events and the number of person-months of follow-up in each group. If the number of person-months is not reported, the product of the duration of follow-up and the number of children evaluated will be used to estimate this figure. We will calculate the rate ratio and standard error (SE) for each study. Zero events will be replaced by 0.5. We will extract both adjusted and unadjusted covariate incidence rate ratios if they are reported in the original studies. For continuous data, we will extract means (arithmetic or geometric) and a measure of variance (standard deviation (SD), SE, or confidence interval (CI)), percentage or mean change from baseline, and the numbers analyzed in each group. SDs will be computed from SEs or 95% CIs, assuming a normal distribution of the values. Haemoglobin values in g/dL will be calculated by multiplying haematocrit or packed cell volume values by 0.34, and studies reporting haemoglobin values in g/dL will be converted to g/L. In cluster-randomized trials, we will record the unit of randomization (e.g. household, compound, sector, or village), the number of clusters in the trial, and the average cluster size. The statistical methods used to analyze the trials will be documented, along with details describing whether these methods adjusted for clustering or other covariates. We plan to extract estimates of the intra-cluster correlation coefficient (ICC) for each outcome. Where results are adjusted for clustering, we will extract the treatment effect estimate and the SD or CI. If the results are not adjusted for clustering, we will extract the data reported. Assessment of risk of bias in included studies Two review authors (KSC, LFY) will independently assess the risk of bias for each included trial using the Cochrane 'Risk of bias 2' tool (RoB 2) for randomized studies (Sterne 2019). Judgements about the risk of bias of included studies will be made according to the recommendations outlined in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2021). Disagreements will be resolved by discussion, or by involving a third review author. The interest of our review will be to assess the effect of assignment to the interventions at baseline. We will evaluate each primary outcome using the RoB2 tool. The five domains of the Cochrane RoB2 tool include the following. Bias arising from the randomization process. Bias due to deviations from intended interventions. Bias due to missing outcome data. Bias in measurement of the outcome. Bias in selection of the reported result. Each domain of the RoB2 tool comprises the following. A series of 'signalling' questions. A judgement about the risk of bias for the domain, facilitated by an algorithm that maps responses to the signalling questions to a proposed judgement. Free-text boxes to justify responses to the signalling questions and 'Risk of bias' judgements. An option to predict (and explain) the likely direction of bias. Responses to signalling questions elicit information relevant to an assessment of the risk of bias. These response options are as follows. Yes (may indicate either low or high risk of bias, depending on the most natural way to ask the question). Probably yes. Probably no. No. No information (may indicate no evidence of that problem or an absence of information leading to concerns about there being a problem). Based on the answer to the signalling question, a 'Risk of bias' judgement is assigned to each domain. These judgements include one of the following. High risk of bias Low risk of bias Some concerns To generate the risk of bias judgement for each domain in the randomized studies, we will use the Excel template, available at www.riskofbias.info/welcome/rob-2-0-tool/current-version-of-rob-2. This file will be stored on a scientific data website, available to readers. Risk of bias in cluster randomized controlled trials For the cluster randomized trials, we will be using the RoB2 tool to analyze the five standard domains listed above along with Domain 1b (bias arising from the timing of identification or recruitment of participants) and its related signalling questions. To generate the risk of bias judgement for each domain in the cluster RCTs, we will use the Excel template available at https://sites.google.com/site/riskofbiastool/welcome/rob-2-0-tool/rob-2-for-cluster-randomized-trials. This file will be stored on a scientific data website, available to readers. Risk of bias in cross-over randomized controlled trials For cross-over randomized trials, we will be using the RoB2 tool to analyze the five standard domains listed above along with Domain 2 (bias due to deviations from intended interventions), and Domain 3 (bias due to missing outcome data), and their respective signalling questions. To generate the risk of bias judgement for each domain in the cross-over RCTs, we will use the Excel template, available at https://sites.google.com/site/riskofbiastool/welcome/rob-2-0-tool/rob-2-for-crossover-trials, for each risk of bias judgement of cross-over randomized studies. This file will be stored on a scientific data website, available to readers. Overall risk of bias The overall 'Risk of bias' judgement for each specific trial being assessed will be based on each domain-level judgement. The overall judgements include the following. Low risk of bias (the trial is judged to be at low risk of bias for all domains). Some concerns (the trial is judged to raise some concerns in at least one domain but is not judged to be at high risk of bias for any domain). High risk of bias (the trial is judged to be at high risk of bias in at least one domain, or is judged to have some concerns for multiple domains in a way that substantially lowers confidence in the result). The 'risk of bias' assessments will inform our GRADE evaluations of the certainty of evidence for our primary outcomes presented in the 'Summary of findings' tables and will also be used to inform the sensitivity analyses; (see Sensitivity analysis). If there is insufficient information in study reports to enable an assessment of the risk of bias, studies will be classified as "awaiting assessment" until further information is published or made available to us. Measures of treatment effect Dichotomous data For dichotomous data, we will present proportions and, for two-group comparisons, results as average RR or odds ratio (OR) with 95% CIs. Ordered categorical data Continuous data We will report results for continuous outcomes as the mean difference (MD) with 95% CIs, if outcomes are measured in the same way between trials. Where some studies have reported endpoint data and others have reported change-from-baseline data (with errors), we will combine these in the meta-analysis, if the outcomes were reported using the same scale. We will use the standardized mean difference (SMD), with 95% CIs, to combine trials that measured the same outcome but used different methods. If we do not find three or more studies for a pooled analysis, we will summarize the results in a narrative form. Unit of analysis issues Cluster-randomized trials We plan to combine results from both cluster-randomized and individually randomized studies, providing there is little heterogeneity between the studies. If the authors of cluster-randomized trials conducted their analyses at a different level from that of allocation, and they have not appropriately accounted for the cluster design in their analyses, we will calculate the trials' effective sample sizes to account for the effect of clustering in data. When one or more cluster-RCT reports RRs adjusted for clustering, we will compute cluster-adjusted SEs for the other trials. When none of the cluster-RCTs provide cluster-adjusted RRs, we will adjust the sample size for clustering. We will divide, by the estimated design effects (DE), the number of events and number evaluated for dichotomous outcomes and the number evaluated for continuous outcomes, where DE = 1 + ((average cluster size 1) * ICC). The derivation of the estimated ICCs and DEs will be reported. We will utilize the intra-cluster correlation coefficient (ICC), derived from the trial (if available), or from another source (e.g., using the ICCs derived from other, similar trials) and then calculate the design effect with the formula provided in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2021). If this approach is used, we will report it and undertake sensitivity analysis to investigate the effect of variations in ICC. Studies with more than two treatment groups If we identify studies with more than two intervention groups (multi-arm studies), where possible we will combine groups to create a single pair-wise comparison or use the methods set out in the Cochrane Handbook to avoid double counting study participants (Higgins 2021). For the subgroup analyses, when the control group was shared by two or more study arms, we will divide the control group (events and total population) over the number of relevant subgroups to avoid double counting the participants. Trials with several study arms can be included more than once for different comparisons. Cross-over trials From cross-over trials, we will consider the first period of measurement only and will analyze the results together with parallel-group studies. Multiple outcome events In several outcomes, a participant might experience more than one outcome event during the trial period. For all outcomes, we will extract the number of participants with at least one event. Dealing with missing data We will contact the trial authors if the available data are unclear, missing, or reported in a format that is different from the format needed. We aim to perform a 'per protocol' or 'as observed' analysis; otherwise, we will perform a complete case analysis. This means that for treatment failure, we will base the analyses on the participants who received treatment and the number of participants for which there was an inability to clear malarial parasitaemia or prevent recrudescence after administration of an antimalarial medicine reported in the studies. Assessment of heterogeneity Heterogeneity in the results of the trials will be assessed by visually examining the forest plot to detect non-overlapping CIs, using the Chi2 test of heterogeneity (where a P value of less than 0.1 indicates statistical significance) and the I2 statistic of inconsistency (with a value of greater than 50% denoting moderate levels of heterogeneity). When statistical heterogeneity is present, we will investigate the reasons for it, using subgroup analysis. Assessment of reporting biases We will construct a funnel plot to assess the effect of small studies for the main outcome (when including more than 10 trials). Data synthesis The primary analysis will include all eligible studies that provide data regardless of the overall risk of bias as assessed by the RoB2 tool. Analyses will be conducted using Review Manager 5.4 (Review Manager 2020). Cluster-RCTs will be included in the main analysis after adjustment for clustering (see the previous section on cluster-RCTs). The meta-analysis will be performed using the Mantel-Haenszel random-effects model or the generic inverse variance method (when adjustment for clustering is performed by adjusting SEs), as appropriate. Subgroup analysis and investigation of heterogeneity The overall risk of bias will not be used as the basis in conducting our subgroup analyses. However, where data are available, we plan to conduct the following subgroup analyses, independent of heterogeneity. Dose of folic acid supplementation: higher doses (4 mg or more, daily) versus lower doses (less than 4 mg, daily). Moderate-severe anaemia at baseline (mean haemoglobin of participants in a trial at baseline below 100 g/L for pregnant women and children aged six to 59 months, and below 110 g/L for other populations) versus normal at baseline (mean haemoglobin above 100 g/L for pregnant women and children aged six to 59 months, and above 110 g/L for other populations). Antimalarial drug resistance to parasite: known resistance versus no resistance versus unknown/mixed/unreported parasite resistance. Folate status at baseline: Deficient (e.g. RBC folate concentration of less than 305 nmol/L, or serum folate concentration of less than 7nmol/L) and Insufficient (e.g. RBC folate concentration from 305 to less than 906 nmol/L, or serum folate concentration from 7 to less than 25 nmol/L) versus Sufficient (e.g. RBC folate concentration above 906 nmol/L, or serum folate concentration above 25 nmol/L). Presence of anaemia at baseline: yes versus no. Mandatory fortification status: yes, versus no (voluntary or none). We will only use the primary outcomes in any subgroup analyses, and we will limit subgroup analyses to those outcomes for which three or more trials contributed data. Comparisons between subgroups will be performed using Review Manager 5.4 (Review Manager 2020). Sensitivity analysis We will perform a sensitivity analysis, using the risk of bias as a variable to explore the robustness of the findings in our primary outcomes. We will verify the behaviour of our estimators by adding and removing studies with a high risk of bias overall from the analysis. That is, studies with a low risk of bias versus studies with a high risk of bias. Summary of findings and assessment of the certainty of the evidence For the assessment across studies, we will use the GRADE approach, as outlined in (Schünemann 2021). We will use the five GRADE considerations (study limitations based on RoB2 judgements, consistency of effect, imprecision, indirectness, and publication bias) to assess the certainty of the body of evidence as it relates to the studies which contribute data to the meta-analyses for the primary outcomes. The GRADEpro Guideline Development Tool (GRADEpro) will be used to import data from Review Manager 5.4 (Review Manager 2020) to create 'Summary of Findings' tables. The primary outcomes for the main comparison will be listed with estimates of relative effects, along with the number of participants and studies contributing data for those outcomes. These tables will provide outcome-specific information concerning the overall certainty of evidence from studies included in the comparison, the magnitude of the effect of the interventions examined, and the sum of available data on the outcomes we considered. We will include only primary outcomes in the summary of findings tables. For each individual outcome, two review authors (KSC, LFY) will independently assess the certainty of the evidence using the GRADE approach (Balshem 2011). For assessments of the overall certainty of evidence for each outcome that includes pooled data from included trials, we will downgrade the evidence from 'high certainty' by one level for serious (or by two for very serious) study limitations (risk of bias, indirectness of evidence, serious inconsistency, imprecision of effect estimates, or potential publication bias).
Crider K
,Williams J
,Qi YP
,Gutman J
,Yeung L
,Mai C
,Finkelstain J
,Mehta S
,Pons-Duran C
,Menéndez C
,Moraleda C
,Rogers L
,Daniels K
,Green P
... -
《Cochrane Database of Systematic Reviews》
Travel-related control measures to contain the COVID-19 pandemic: a rapid review.
In late 2019, first cases of coronavirus disease 2019, or COVID-19, caused by the novel coronavirus SARS-CoV-2, were reported in Wuhan, China. Subsequently COVID-19 spread rapidly around the world. To contain the ensuing pandemic, numerous countries have implemented control measures related to international travel, including border closures, partial travel restrictions, entry or exit screening, and quarantine of travellers.
To assess the effectiveness of travel-related control measures during the COVID-19 pandemic on infectious disease and screening-related outcomes.
We searched MEDLINE, Embase and COVID-19-specific databases, including the WHO Global Database on COVID-19 Research, the Cochrane COVID-19 Study Register, and the CDC COVID-19 Research Database on 26 June 2020. We also conducted backward-citation searches with existing reviews.
We considered experimental, quasi-experimental, observational and modelling studies assessing the effects of travel-related control measures affecting human travel across national borders during the COVID-19 pandemic. We also included studies concerned with severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) as indirect evidence. Primary outcomes were cases avoided, cases detected and a shift in epidemic development due to the measures. Secondary outcomes were other infectious disease transmission outcomes, healthcare utilisation, resource requirements and adverse effects if identified in studies assessing at least one primary outcome.
One review author screened titles and abstracts; all excluded abstracts were screened in duplicate. Two review authors independently screened full texts. One review author extracted data, assessed risk of bias and appraised study quality. At least one additional review author checked for correctness of all data reported in the 'Risk of bias' assessment, quality appraisal and data synthesis. For assessing the risk of bias and quality of included studies, we used the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool for observational studies concerned with screening, ROBINS-I for observational ecological studies and a bespoke tool for modelling studies. We synthesised findings narratively. One review author assessed certainty of evidence with GRADE, and the review author team discussed ratings.
We included 40 records reporting on 36 unique studies. We found 17 modelling studies, 7 observational screening studies and one observational ecological study on COVID-19, four modelling and six observational studies on SARS, and one modelling study on SARS and MERS, covering a variety of settings and epidemic stages. Most studies compared travel-related control measures against a counterfactual scenario in which the intervention measure was not implemented. However, some modelling studies described additional comparator scenarios, such as different levels of travel restrictions, or a combination of measures. There were concerns with the quality of many modelling studies and the risk of bias of observational studies. Many modelling studies used potentially inappropriate assumptions about the structure and input parameters of models, and failed to adequately assess uncertainty. Concerns with observational screening studies commonly related to the reference test and the flow of the screening process. Studies on COVID-19 Travel restrictions reducing cross-border travel Eleven studies employed models to simulate a reduction in travel volume; one observational ecological study assessed travel restrictions in response to the COVID-19 pandemic. Very low-certainty evidence from modelling studies suggests that when implemented at the beginning of the outbreak, cross-border travel restrictions may lead to a reduction in the number of new cases of between 26% to 90% (4 studies), the number of deaths (1 study), the time to outbreak of between 2 and 26 days (2 studies), the risk of outbreak of between 1% to 37% (2 studies), and the effective reproduction number (1 modelling and 1 observational ecological study). Low-certainty evidence from modelling studies suggests a reduction in the number of imported or exported cases of between 70% to 81% (5 studies), and in the growth acceleration of epidemic progression (1 study). Screening at borders with or without quarantine Evidence from three modelling studies of entry and exit symptom screening without quarantine suggests delays in the time to outbreak of between 1 to 183 days (very low-certainty evidence) and a detection rate of infected travellers of between 10% to 53% (low-certainty evidence). Six observational studies of entry and exit screening were conducted in specific settings such as evacuation flights and cruise ship outbreaks. Screening approaches varied but followed a similar structure, involving symptom screening of all individuals at departure or upon arrival, followed by quarantine, and different procedures for observation and PCR testing over a period of at least 14 days. The proportion of cases detected ranged from 0% to 91% (depending on the screening approach), and the positive predictive value ranged from 0% to 100% (very low-certainty evidence). The outcomes, however, should be interpreted in relation to both the screening approach used and the prevalence of infection among the travellers screened; for example, symptom-based screening alone generally performed worse than a combination of symptom-based and PCR screening with subsequent observation during quarantine. Quarantine of travellers Evidence from one modelling study simulating a 14-day quarantine suggests a reduction in the number of cases seeded by imported cases; larger reductions were seen with increasing levels of quarantine compliance ranging from 277 to 19 cases with rates of compliance modelled between 70% to 100% (very low-certainty evidence).
With much of the evidence deriving from modelling studies, notably for travel restrictions reducing cross-border travel and quarantine of travellers, there is a lack of 'real-life' evidence for many of these measures. The certainty of the evidence for most travel-related control measures is very low and the true effects may be substantially different from those reported here. Nevertheless, some travel-related control measures during the COVID-19 pandemic may have a positive impact on infectious disease outcomes. Broadly, travel restrictions may limit the spread of disease across national borders. Entry and exit symptom screening measures on their own are not likely to be effective in detecting a meaningful proportion of cases to prevent seeding new cases within the protected region; combined with subsequent quarantine, observation and PCR testing, the effectiveness is likely to improve. There was insufficient evidence to draw firm conclusions about the effectiveness of travel-related quarantine on its own. Some of the included studies suggest that effects are likely to depend on factors such as the stage of the epidemic, the interconnectedness of countries, local measures undertaken to contain community transmission, and the extent of implementation and adherence.
Burns J
,Movsisyan A
,Stratil JM
,Coenen M
,Emmert-Fees KM
,Geffert K
,Hoffmann S
,Horstick O
,Laxy M
,Pfadenhauer LM
,von Philipsborn P
,Sell K
,Voss S
,Rehfuess E
... -
《Cochrane Database of Systematic Reviews》
International travel-related control measures to contain the COVID-19 pandemic: a rapid review.
In late 2019, the first cases of coronavirus disease 2019 (COVID-19) were reported in Wuhan, China, followed by a worldwide spread. Numerous countries have implemented control measures related to international travel, including border closures, travel restrictions, screening at borders, and quarantine of travellers.
To assess the effectiveness of international travel-related control measures during the COVID-19 pandemic on infectious disease transmission and screening-related outcomes.
We searched MEDLINE, Embase and COVID-19-specific databases, including the Cochrane COVID-19 Study Register and the WHO Global Database on COVID-19 Research to 13 November 2020.
We considered experimental, quasi-experimental, observational and modelling studies assessing the effects of travel-related control measures affecting human travel across international borders during the COVID-19 pandemic. In the original review, we also considered evidence on severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). In this version we decided to focus on COVID-19 evidence only. Primary outcome categories were (i) cases avoided, (ii) cases detected, and (iii) a shift in epidemic development. Secondary outcomes were other infectious disease transmission outcomes, healthcare utilisation, resource requirements and adverse effects if identified in studies assessing at least one primary outcome.
Two review authors independently screened titles and abstracts and subsequently full texts. For studies included in the analysis, one review author extracted data and appraised the study. At least one additional review author checked for correctness of data. To assess the risk of bias and quality of included studies, we used the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool for observational studies concerned with screening, and a bespoke tool for modelling studies. We synthesised findings narratively. One review author assessed the certainty of evidence with GRADE, and several review authors discussed these GRADE judgements.
Overall, we included 62 unique studies in the analysis; 49 were modelling studies and 13 were observational studies. Studies covered a variety of settings and levels of community transmission. Most studies compared travel-related control measures against a counterfactual scenario in which the measure was not implemented. However, some modelling studies described additional comparator scenarios, such as different levels of stringency of the measures (including relaxation of restrictions), or a combination of measures. Concerns with the quality of modelling studies related to potentially inappropriate assumptions about the structure and input parameters, and an inadequate assessment of model uncertainty. Concerns with risk of bias in observational studies related to the selection of travellers and the reference test, and unclear reporting of certain methodological aspects. Below we outline the results for each intervention category by illustrating the findings from selected outcomes. Travel restrictions reducing or stopping cross-border travel (31 modelling studies) The studies assessed cases avoided and shift in epidemic development. We found very low-certainty evidence for a reduction in COVID-19 cases in the community (13 studies) and cases exported or imported (9 studies). Most studies reported positive effects, with effect sizes varying widely; only a few studies showed no effect. There was very low-certainty evidence that cross-border travel controls can slow the spread of COVID-19. Most studies predicted positive effects, however, results from individual studies varied from a delay of less than one day to a delay of 85 days; very few studies predicted no effect of the measure. Screening at borders (13 modelling studies; 13 observational studies) Screening measures covered symptom/exposure-based screening or test-based screening (commonly specifying polymerase chain reaction (PCR) testing), or both, before departure or upon or within a few days of arrival. Studies assessed cases avoided, shift in epidemic development and cases detected. Studies generally predicted or observed some benefit from screening at borders, however these varied widely. For symptom/exposure-based screening, one modelling study reported that global implementation of screening measures would reduce the number of cases exported per day from another country by 82% (95% confidence interval (CI) 72% to 95%) (moderate-certainty evidence). Four modelling studies predicted delays in epidemic development, although there was wide variation in the results between the studies (very low-certainty evidence). Four modelling studies predicted that the proportion of cases detected would range from 1% to 53% (very low-certainty evidence). Nine observational studies observed the detected proportion to range from 0% to 100% (very low-certainty evidence), although all but one study observed this proportion to be less than 54%. For test-based screening, one modelling study provided very low-certainty evidence for the number of cases avoided. It reported that testing travellers reduced imported or exported cases as well as secondary cases. Five observational studies observed that the proportion of cases detected varied from 58% to 90% (very low-certainty evidence). Quarantine (12 modelling studies) The studies assessed cases avoided, shift in epidemic development and cases detected. All studies suggested some benefit of quarantine, however the magnitude of the effect ranged from small to large across the different outcomes (very low- to low-certainty evidence). Three modelling studies predicted that the reduction in the number of cases in the community ranged from 450 to over 64,000 fewer cases (very low-certainty evidence). The variation in effect was possibly related to the duration of quarantine and compliance. Quarantine and screening at borders (7 modelling studies; 4 observational studies) The studies assessed shift in epidemic development and cases detected. Most studies predicted positive effects for the combined measures with varying magnitudes (very low- to low-certainty evidence). Four observational studies observed that the proportion of cases detected for quarantine and screening at borders ranged from 68% to 92% (low-certainty evidence). The variation may depend on how the measures were combined, including the length of the quarantine period and days when the test was conducted in quarantine.
With much of the evidence derived from modelling studies, notably for travel restrictions reducing or stopping cross-border travel and quarantine of travellers, there is a lack of 'real-world' evidence. The certainty of the evidence for most travel-related control measures and outcomes is very low and the true effects are likely to be substantially different from those reported here. Broadly, travel restrictions may limit the spread of disease across national borders. Symptom/exposure-based screening measures at borders on their own are likely not effective; PCR testing at borders as a screening measure likely detects more cases than symptom/exposure-based screening at borders, although if performed only upon arrival this will likely also miss a meaningful proportion of cases. Quarantine, based on a sufficiently long quarantine period and high compliance is likely to largely avoid further transmission from travellers. Combining quarantine with PCR testing at borders will likely improve effectiveness. Many studies suggest that effects depend on factors, such as levels of community transmission, travel volumes and duration, other public health measures in place, and the exact specification and timing of the measure. Future research should be better reported, employ a range of designs beyond modelling and assess potential benefits and harms of the travel-related control measures from a societal perspective.
Burns J
,Movsisyan A
,Stratil JM
,Biallas RL
,Coenen M
,Emmert-Fees KM
,Geffert K
,Hoffmann S
,Horstick O
,Laxy M
,Klinger C
,Kratzer S
,Litwin T
,Norris S
,Pfadenhauer LM
,von Philipsborn P
,Sell K
,Stadelmaier J
,Verboom B
,Voss S
,Wabnitz K
,Rehfuess E
... -
《Cochrane Database of Systematic Reviews》
Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection.
Accurate rapid diagnostic tests for SARS-CoV-2 infection could contribute to clinical and public health strategies to manage the COVID-19 pandemic. Point-of-care antigen and molecular tests to detect current infection could increase access to testing and early confirmation of cases, and expediate clinical and public health management decisions that may reduce transmission.
To assess the diagnostic accuracy of point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups.
Electronic searches of the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) were undertaken on 30 Sept 2020. We checked repositories of COVID-19 publications and included independent evaluations from national reference laboratories, the Foundation for Innovative New Diagnostics and the Diagnostics Global Health website to 16 Nov 2020. We did not apply language restrictions.
We included studies of people with either suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen or molecular tests suitable for a point-of-care setting (minimal equipment, sample preparation, and biosafety requirements, with results within two hours of sample collection). We included all reference standards that define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction (RT-PCR) tests and established diagnostic criteria).
Studies were screened independently in duplicate with disagreements resolved by discussion with a third author. Study characteristics were extracted by one author and checked by a second; extraction of study results and assessments of risk of bias and applicability (made using the QUADAS-2 tool) were undertaken independently in duplicate. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and pooled data using the bivariate model separately for antigen and molecular-based tests. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status.
Seventy-eight study cohorts were included (described in 64 study reports, including 20 pre-prints), reporting results for 24,087 samples (7,415 with confirmed SARS-CoV-2). Studies were mainly from Europe (n = 39) or North America (n = 20), and evaluated 16 antigen and five molecular assays. We considered risk of bias to be high in 29 (50%) studies because of participant selection; in 66 (85%) because of weaknesses in the reference standard for absence of infection; and in 29 (45%) for participant flow and timing. Studies of antigen tests were of a higher methodological quality compared to studies of molecular tests, particularly regarding the risk of bias for participant selection and the index test. Characteristics of participants in 35 (45%) studies differed from those in whom the test was intended to be used and the delivery of the index test in 39 (50%) studies differed from the way in which the test was intended to be used. Nearly all studies (97%) defined the presence or absence of SARS-CoV-2 based on a single RT-PCR result, and none included participants meeting case definitions for probable COVID-19. Antigen tests Forty-eight studies reported 58 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies. There were differences between symptomatic (72.0%, 95% CI 63.7% to 79.0%; 37 evaluations; 15530 samples, 4410 cases) and asymptomatic participants (58.1%, 95% CI 40.2% to 74.1%; 12 evaluations; 1581 samples, 295 cases). Average sensitivity was higher in the first week after symptom onset (78.3%, 95% CI 71.1% to 84.1%; 26 evaluations; 5769 samples, 2320 cases) than in the second week of symptoms (51.0%, 95% CI 40.8% to 61.0%; 22 evaluations; 935 samples, 692 cases). Sensitivity was high in those with cycle threshold (Ct) values on PCR ≤25 (94.5%, 95% CI 91.0% to 96.7%; 36 evaluations; 2613 cases) compared to those with Ct values >25 (40.7%, 95% CI 31.8% to 50.3%; 36 evaluations; 2632 cases). Sensitivity varied between brands. Using data from instructions for use (IFU) compliant evaluations in symptomatic participants, summary sensitivities ranged from 34.1% (95% CI 29.7% to 38.8%; Coris Bioconcept) to 88.1% (95% CI 84.2% to 91.1%; SD Biosensor STANDARD Q). Average specificities were high in symptomatic and asymptomatic participants, and for most brands (overall summary specificity 99.6%, 95% CI 99.0% to 99.8%). At 5% prevalence using data for the most sensitive assays in symptomatic people (SD Biosensor STANDARD Q and Abbott Panbio), positive predictive values (PPVs) of 84% to 90% mean that between 1 in 10 and 1 in 6 positive results will be a false positive, and between 1 in 4 and 1 in 8 cases will be missed. At 0.5% prevalence applying the same tests in asymptomatic people would result in PPVs of 11% to 28% meaning that between 7 in 10 and 9 in 10 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed. No studies assessed the accuracy of repeated lateral flow testing or self-testing. Rapid molecular assays Thirty studies reported 33 evaluations of five different rapid molecular tests. Sensitivities varied according to test brand. Most of the data relate to the ID NOW and Xpert Xpress assays. Using data from evaluations following the manufacturer's instructions for use, the average sensitivity of ID NOW was 73.0% (95% CI 66.8% to 78.4%) and average specificity 99.7% (95% CI 98.7% to 99.9%; 4 evaluations; 812 samples, 222 cases). For Xpert Xpress, the average sensitivity was 100% (95% CI 88.1% to 100%) and average specificity 97.2% (95% CI 89.4% to 99.3%; 2 evaluations; 100 samples, 29 cases). Insufficient data were available to investigate the effect of symptom status or time after symptom onset.
Antigen tests vary in sensitivity. In people with signs and symptoms of COVID-19, sensitivities are highest in the first week of illness when viral loads are higher. The assays shown to meet appropriate criteria, such as WHO's priority target product profiles for COVID-19 diagnostics ('acceptable' sensitivity ≥ 80% and specificity ≥ 97%), can be considered as a replacement for laboratory-based RT-PCR when immediate decisions about patient care must be made, or where RT-PCR cannot be delivered in a timely manner. Positive predictive values suggest that confirmatory testing of those with positive results may be considered in low prevalence settings. Due to the variable sensitivity of antigen tests, people who test negative may still be infected. Evidence for testing in asymptomatic cohorts was limited. Test accuracy studies cannot adequately assess the ability of antigen tests to differentiate those who are infectious and require isolation from those who pose no risk, as there is no reference standard for infectiousness. A small number of molecular tests showed high accuracy and may be suitable alternatives to RT-PCR. However, further evaluations of the tests in settings as they are intended to be used are required to fully establish performance in practice. Several important studies in asymptomatic individuals have been reported since the close of our search and will be incorporated at the next update of this review. Comparative studies of antigen tests in their intended use settings and according to test operator (including self-testing) are required.
Dinnes J
,Deeks JJ
,Berhane S
,Taylor M
,Adriano A
,Davenport C
,Dittrich S
,Emperador D
,Takwoingi Y
,Cunningham J
,Beese S
,Domen J
,Dretzke J
,Ferrante di Ruffano L
,Harris IM
,Price MJ
,Taylor-Phillips S
,Hooft L
,Leeflang MM
,McInnes MD
,Spijker R
,Van den Bruel A
,Cochrane COVID-19 Diagnostic Test Accuracy Group
... -
《Cochrane Database of Systematic Reviews》