Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial.
Non-immersive virtual reality is an emerging strategy to enhance motor performance for stroke rehabilitation. There has been rapid adoption of non-immersive virtual reality as a rehabilitation strategy despite the limited evidence about its safety and effectiveness. Our aim was to compare the safety and efficacy of virtual reality with recreational therapy on motor recovery in patients after an acute ischaemic stroke.
In this randomised, controlled, single-blind, parallel-group trial we enrolled adults (aged 18-85 years) who had a first-ever ischaemic stroke and a motor deficit of the upper extremity score of 3 or more (measured with the Chedoke-McMaster scale) within 3 months of randomisation from 14 in-patient stroke rehabilitation units from four countries (Canada [11], Argentina [1], Peru [1], and Thailand [1]). Participants were randomly allocated (1:1) by a computer-generated assignment at enrolment to receive a programme of structured, task-oriented, upper extremity sessions (ten sessions, 60 min each) of either non-immersive virtual reality using the Nintendo Wii gaming system (VRWii) or simple recreational activities (playing cards, bingo, Jenga, or ball game) as add-on therapies to conventional rehabilitation over a 2 week period. All investigators assessing outcomes were masked to treatment assignment. The primary outcome was upper extremity motor performance measured by total time to complete the Wolf Motor Function Test (WMFT) at the end of the 2 week intervention period, analysed in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, number NTC01406912.
The study was done between May 12, 2012, and Oct 1, 2015. We randomly assigned 141 patients: 71 received VRWii therapy and 70 received recreational activity. 121 (86%) patients (59 in the VRWii group and 62 in the recreational activity group) completed the final assessment and were included in the primary analysis. Each group improved WMFT performance time relative to baseline (decrease in median time from 43·7 s [IQR 26·1-68·0] to 29·7 s [21·4-45·2], 32·0% reduction for VRWii vs 38·0 s [IQR 28·0-64·1] to 27·1 s [21·2-45·5], 28·7% reduction for recreational activity). Mean time of conventional rehabilitation during the trial was similar between groups (VRWii, 373 min [SD 322] vs recreational activity, 397 min [345]; p=0·70) as was the total duration of study intervention (VRWii, 528 min [SD 155] vs recreational activity, 541 min [142]; p=0·60). Multivariable analysis adjusted for baseline WMFT score, age, sex, baseline Chedoke-McMaster, and stroke severity revealed no significant difference between groups in the primary outcome (adjusted mean estimate of difference in WMFT: 4·1 s, 95% CI -14·4 to 22·6). There were three serious adverse events during the trial, all deemed to be unrelated to the interventions (seizure after discharge and intracerebral haemorrhage in the recreational activity group and heart attack in the VRWii group). Overall incidences of adverse events and serious adverse events were similar between treatment groups.
In patients who had a stroke within the 3 months before enrolment and had mild-to-moderate upper extremity motor impairment, non-immersive virtual reality as an add-on therapy to conventional rehabilitation was not superior to a recreational activity intervention in improving motor function, as measured by WMFT. Our study suggests that the type of task used in motor rehabilitation post-stroke might be less relevant, as long as it is intensive enough and task-specific. Simple, low-cost, and widely available recreational activities might be as effective as innovative non-immersive virtual reality technologies.
Heart and Stroke Foundation of Canada and Ontario Ministry of Health.
Saposnik G
,Cohen LG
,Mamdani M
,Pooyania S
,Ploughman M
,Cheung D
,Shaw J
,Hall J
,Nord P
,Dukelow S
,Nilanont Y
,De Los Rios F
,Olmos L
,Levin M
,Teasell R
,Cohen A
,Thorpe K
,Laupacis A
,Bayley M
,Stroke Outcomes Research Canada
... -
《-》
Comparing the effects of Swiss-ball training and virtual reality training on balance, mobility, and cortical activation in individuals with chronic stroke: study protocol for a multi-center randomized controlled trial.
Balance and mobility deficits are major concerns in stroke rehabilitation. Virtual reality (VR) training and Swiss-ball training are commonly used approaches to improve balance and mobility. However, no study has compared the efficacy of VR training, Swiss-ball training, and their combination in improving balance and mobility function or investigated cortical activation and connectivity in individuals with stroke.
A prospective, single-blinded, parallel-armed, multi-center randomized controlled trial with factorial design will be conducted. Seventy-six participants aged 30-80 years with stroke will be recruited. Participants will be allocated to one of the four groups: (A) the VR training + Swiss-ball training + conventional physical therapy group; (B) the Swiss-ball training + conventional physical therapy group; (C) the VR training + conventional physical therapy group; or (D) the conventional physical therapy group. All participants will receive 50 min of training per day, 5 times per week, for a total of 4 weeks. The primary outcomes will be balance and mobility measures. Secondary outcomes will include the 10-min walk test, dynamic gait index, and cortical activation. Outcomes will be measured on three occasions: at baseline, after the training, and at the 4-week follow-up.
This trial will provide evidence to determine whether there are differences in clinical outcomes and cortical activation following two different types of exercise programs and their combination, and to elucidate the recovery mechanisms of balance and mobility function in individuals with stroke.
Chinese Clinical Trial Registry reference: www.chictr.org.cn (No. ChiCTR2400082135). Registered on May 24, 2024.
Noreen A
,Lu J
,Xu X
,Jiang H
,Hua Y
,Shi X
,Tang X
,Bai Z
,Liang Q
,Tian Y
,Han T
,Lu Y
,Ao L
,Yang L
... -
《Trials》