lncRNA MCM3AP-AS1 inhibits the progression of colorectal cancer via the miR-19a-3p/FOXF2 axis.
Long non-coding RNA MCM3AP antisense RNA 1 (lncRNA MCM3AP-AS1) has a regulatory role in the development of diverse malignancies, whereas its role and mechanism in colorectal cancer (CRC) is not yet clear.
The relative expression of MCM3AP-AS1, miR-19a-3p and forkhead box F2 (FOXF2) mRNA in 53 cases of CRC and its adjacent normal tissues, human normal colonic mucosal cells (FHC cells) and CRC cell lines was examined by a quantitative real-time polymerase chain reaction, and the changes of cell multiplication and migration were examined by the cell counting kit-8 method, EdU test, and scratch-healing test, respectively. Bioinformatics, dual-luciferase reporter gene assay and a RNA immunoprecipitation experiment were adopted to predict and verify the relationship between MCM3AP-AS1 and miR-19a-3p; bioinformatics and dual-luciferase reporter gene assay were adopted to predict and verify the relationship between miR-19a-3p and FOXF2. Western blotting was executed to examine the effects of MCM3AP-AS1 overexpression or knockdown on FOXF2 protein expression.
MCM3AP-AS1 expression was down-modulated in CRC, and its dysregulation was linked to unfavorable pathological characteristics. MCM3AP-AS1 significantly impeded the multiplication and migration of CRC cells. MCM3AP-AS1 was recognized as a molecular sponge to suppress miR-19a-3p expression, and FOXF2 was a target gene of miR-19a-3p. MCM3AP-AS1 positively modulated FOXF2 expression, and its biological effect was dependent the on miR-19a-3p/FOXF2 axis.
MCM3AP-AS1 can inhibit CRC promoting by modulating the miR-19a-3p/FOXF2 axis.
Dai W
,Zeng W
,Lee D
《-》
MiR-19a-3p regulates the Forkhead box F2-mediated Wnt/β-catenin signaling pathway and affects the biological functions of colorectal cancer cells.
Colorectal cancer (CRC) is one of the most common malignancies worldwide.
To explore the expression of microRNA miR-19a-3p and Forkhead box F2 (FOXF2) in patients with CRC and the relevant mechanisms.
Sixty-two CRC patients admitted to the hospital were enrolled into the study group, and sixty healthy people from the same period were assigned to the control group. Elbow venous blood was sampled from the patients and healthy individuals, and blood serum was saved for later analysis. MiR-19a-3p mimics, miR-19a-3p inhibitor, miR-negative control, small interfering-FOXF2, and short hairpin-FOXF2 were transfected into HT29 and HCT116 cells. Then quantitative polymerase chain reaction was performed to quantify the expression of miR-19a-3p and FOXF2 in HT29 and HCT116 cells, and western blot (WB) analysis was conducted to evaluate the levels of FOXF2, glycogen synthase kinase 3 beta (GSK-3β), phosphorylated GSK-3β (p-GSK-3β), β-catenin, p-β-catenin, α-catenin, N-cadherin, E-cadherin, and vimentin. The MTT, Transwell, and wound healing assays were applied to analyze cell proliferation, invasion, and migration, respectively, and the dual luciferase reporter assay was used to determine the correlation of miR-19a-3p with FOXF2.
The patients showed high serum levels of miR-19a-3p and low levels of FOXF2, and the area under the curves of miR-19a-3p and FOXF2 were larger than 0.8. MiR-19a-3p and FOXF2 were related to sex, tumor size, age, tumor-node-metastasis staging, lymph node metastasis, and differentiation of CRC patients. Silencing of miR-19a-3p and overexpression of FOXF2 suppressed the epithelial-mesenchymal transition, invasion, migration, and proliferation of cells. WB analysis revealed that silencing of miR-19a-3p and FOXF2 overexpression significantly suppressed the expression of p-GSK-3β, β-catenin, N-cadherin, and vimentin; and increased the levels of GSK-3β, p-β-catenin, α-catenin, and E-cadherin. The dual luciferase reporter assay confirmed that there was a targeted correlation of miR-19a-3p with FOXF2. In addition, a rescue experiment revealed that there were no differences in cell proliferation, invasion, and migration in HT29 and HCT116 cells co-transfected with miR-19a-3p-mimics+sh-FOXF2 and miR-19a-3p-inhibitor+si-FOXF2 compared to the miR-negative control group.
Inhibiting miR-19a-3p expression can upregulate the FOXF2-mediated Wnt/β-catenin signaling pathway, thereby affecting the epithelial-mesenchymal transition, proliferation, invasion, and migration of cells. Thus, miR-19a-3p is likely to be a therapeutic target in CRC.
Yu FB
,Sheng J
,Yu JM
,Liu JH
,Qin XX
,Mou B
... -
《-》