Disentangling the Relative Roles of Vertical Transmission, Subsequent Colonizations, and Diet on Cockroach Microbiome Assembly.

来自 PUBMED

作者:

Renelies-Hamilton JGermer KSillam-Dussès DBodawatta KHPoulsen M

展开

摘要:

A multitude of factors affect the assemblies of complex microbial communities associated with animal hosts, with implications for community flexibility, resilience, and long-term stability; however, their relative effects have rarely been deduced. Here, we use a tractable lab model to quantify the relative and combined effects of parental transmission (egg case microbiome present/reduced), gut inocula (cockroach versus termite gut provisioned), and varying diets (matched or unmatched with gut inoculum source) on gut microbiota structure of hatchlings of the omnivorous cockroach Shelfordella lateralis using 16S rRNA gene (rDNA) amplicon sequencing. We show that the presence of a preexisting bacterial community via vertical transmission of microbes on egg cases reduces subsequent microbial invasion, suggesting priority effects that allow initial colonizers to take a strong hold and which stabilize the microbiome. However, subsequent inoculation sources more strongly affect ultimate community composition and their ecological networks, with distinct host-taxon-of-origin effects on which bacteria establish. While this is so, communities respond flexibly to specific diets in ways that consequently impact predicted community functions. In conclusion, our findings suggest that inoculations drive communities toward different stable states depending on colonization and extinction events, through ecological host-microbe relations and interactions with other gut bacteria, while diet in parallel shapes the functional capabilities of these microbiomes. These effects may lead to consistent microbial communities that maximize the extended phenotype that the microbiota provides the host, particularly if microbes spend most of their lives in host-associated environments.IMPORTANCE When host fitness is dependent on gut microbiota, microbial community flexibility and reproducibility enhance host fitness by allowing fine-tuned environmental tracking and sufficient stability for host traits to evolve. Our findings lend support to the importance of vertically transmitted early-life microbiota as stabilizers, through interactions with potential colonizers, which may contribute to ensuring that the microbiota aligns within host fitness-enhancing parameters. Subsequent colonizations are driven by microbial composition of the sources available, and we confirm that host-taxon-of-origin affects stable subsequent communities, while communities at the same time retain sufficient flexibility to shift in response to available diets. Microbiome structure is thus the result of the relative impact and combined effects of inocula and fluctuations driven by environment-specific microbial sources and digestive needs. These affect short-term community structure on an ecological time scale but could ultimately shape host species specificities in microbiomes across evolutionary time, if environmental conditions prevail.

收起

展开

DOI:

10.1128/mSphere.01023-20

被引量:

13

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(2091)

参考文献(76)

引证文献(13)

来源期刊

mSphere

影响因子:5.024

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读