Distribution of genes encoding adhesins and biofilm formation capacity among Uropathogenic Escherichia coli isolates in relation to the antimicrobial resistance.
Escherichia coli is the most predominant pathogen involved in UTIs. Mainly, fimbrial surface appendages are implicated in adherence to urothelium besides non-fimbrial proteins.
to determine prevalence of genes encoding fimbrial and non-fimbrial proteins among Uropathogenic Escherichia coli (UPEC). Furthermore, distribution of these genes and biofilm formation capacity were investigated in relation to antimicrobial resistance.
Antimicrobial susceptibility of 112 UPEC isolates was performed using disc diffusion method. ESBL production was confirmed by double disc synergy test. Genes encoding fimbrial and non-fimbrial proteins were detected using PCR and biofilm formation was investigated using microtitre plate assay.
UPEC isolates exhibited high resistance against doxycyclines (88.39 %), β-lactams (7.14-86.6%), sulphamethoxazole-trimethoprim (53.75%) and fluoro-quinolones (50%). Fifty percent of tested isolates were ESBL producers. PapGII gene was statistically more prevalent among pyelonephritis isolates. SfaS, focG and picU genes were statistically associated with fluoroquinolone (FQs) sensitive isolates and Dr/afaBC gene was statistically associated with ESBL production. Moreover, non-MDR isolates produced sturdier biofilm.
PapGII adhesin variant seems to have a critical role in colonization of upper urinary tract. There is a possible link between antimicrobial resistance and virulence being capable of affecting the distribution of some genes besides its negative impact on biofilm formation.
Kadry AA
,Al-Kashef NM
,El-Ganiny AM
《-》
Evaluation of adhesin genes and risk factors associated with urinary tract infections by drug-resistant uropathogenic Escherichia coli in North of Iran.
Uropathogenic Escherichia coli (UPEC) isolates, have a wide variety of virulence factors to promote colonization and survival in the urinary tract. This study aimed to evaluate adhesin genes, biofilm formation ability, antibiotic resistance profiles of UPEC strains, and the related risk factors in patients with UTIs caused by drug-resistant UPEC.
A total of 105 UPEC isolates were evaluated for biofilm formation using 96-well microtiter plates, the presence of adhesin genes by PCR assay and the antimicrobial susceptibility pattern using the disk diffusion method. Demographic and clinical characteristics of patients were investigated to identify predisposing factors for drug-resistant isolates.
Out of 105 UPEC isolates, 84.8% were positive for biofilm formation. Biofilm-producing isolates exhibited a significantly higher prevalence of fimH, kpsMTII, csgA, afa/draBC, and pap adhesin genes compared to non-biofilm-producing strains (p < 0.05). The results also revealed that 52.4% of the isolates were ESBL-producing, and 84.8% were multidrug-resistant (MDR). Further analysis of antibiotic susceptibility among ESBL-producing strains showed the highest resistance rates to ampicillin, ciprofloxacin, and trimethoprim-sulfamethoxazole. Conversely, the highest susceptibility, in addition to carbapenems, was observed for fosfomycin, amikacin, cefoxitin, and nitrofurantoin. We identified hypertension as a potential risk factor for infection with ESBL-producing UPEC strains.
Our results revealed a significant rate of drug resistance among UPEC isolates obtained from UTIs in our region. This underscores the importance of monitoring the empirical use of antibiotics and identifying specific risk factors in our geographical area to guide the selection of appropriate empirical treatment for UTIs.
Sheikhi R
,Amini ME
,Alidoust L
,Atrkar Roushan Z
,Nikokar I
... -
《Journal of Infection in Developing Countries》
A systematic review and meta-analysis of antibiotic resistance patterns, and the correlation between biofilm formation with virulence factors in uropathogenic E. coli isolated from urinary tract infections.
Urinary tract infection (UTI) is caused by the invasion of the pathogen in the urinary system that can manifest as symptomatic or asymptomatic bacteriuria. This study was conducted to investigate antibiotic resistance patterns, and the correlation between biofilm formations with virulence factors in uropathogenic E. coli isolates retrieved from UTI. We searched Scopus and Google Scholar, PubMed, Web of sciences for studies published in the English language between 1st 2005 to 31st December 2019. The Mesh terms and text words included "biofilms", OR "biofilm formation", AND "antibiotic resistance", OR "drug-resistance", OR "antimicrobial drug resistance", AND "urinary tract infections", OR "UTI", AND "biofilm related-genes", AND "virulence factors" AND "correlation", AND "Uropathogenic Escherichia coli", OR "Uropathogenic E. coli" AND "prevalence" AND "Iran". Data analyzed using Comprehensive Meta-Analysis (CMA) software. The random-effects model was used to calculate the pooled prevalence with 95% confidence interval (CI). The combined rates of biofilm formation in Uropathogenic E. coli (UPEC) isolates were achieved as 84.6% (95% CI: 72.7-91.9). Also, 24.8%, 26.1% and 44.6% of UPEC isolates were able to create strong, moderate and weak biofilm, respectively. The highest pooled antibiotic resistance was against Ampicillin followed by Tetracycline with resistance rates of 74.6% and 64.9%, respectively. Accordingly, some studies reported that biofilm production was significantly associated with antibiotic resistance and virulence genes (p < 0.05). This study showed a high tendency among UPEC isolates to form biofilm (more than 84%), also, most studies included in the present review reported a significant correlation between biofilm formation with antibiotic resistance and virulence factors.
Zhao F
,Yang H
,Bi D
,Khaledi A
,Qiao M
... -
《-》
Correlation between antimicrobial resistance, biofilm formation, and virulence determinants in uropathogenic Escherichia coli from Egyptian hospital.
Uropathogenic Escherichia coli (UPEC) is the main etiological agent behind community-acquired and hospital-acquired urinary tract infections (UTIs), which are among the most prevalent human infections. The management of UPEC infections is becoming increasingly difficult owing to multi-drug resistance, biofilm formation, and the possession of an extensive virulence arsenal. This study aims to characterize UPEC isolates in Tanta, Egypt, with regard to their antimicrobial resistance, phylogenetic profile, biofilm formation, and virulence, as well as the potential associations among these factors.
One hundred UPEC isolates were obtained from UTI patients in Tanta, Egypt. Antimicrobial susceptibility was assessed using the Kirby-Bauer method. Extended-spectrum β-lactamases (ESBLs) production was screened using the double disk synergy test and confirmed with PCR. Biofilm formation was evaluated using the microtiter-plate assay and microscopy-based techniques. The phylogenetic groups of the isolates were determined. The hemolytic activity, motility, siderophore production, and serum resistance of the isolates were also evaluated. The clonal relatedness of the isolates was assessed using ERIC-PCR.
Isolates displayed elevated resistance to cephalosporins (90-43%), sulfamethoxazole-trimethoprim (63%), and ciprofloxacin (53%). Ninety percent of the isolates were multidrug-resistant (MDR)/ extensively drug-resistant (XDR) and 67% produced ESBLs. Notably, there was an inverse correlation between biofilm formation and antimicrobial resistance, and 31%, 29%, 32%, and 8% of the isolates were strong, moderate, weak, and non-biofilm producers, respectively. Beta-hemolysis, motility, siderophore production, and serum resistance were detected in 64%, 84%, 65%, and 11% of the isolates, respectively. Siderophore production was correlated to resistance to multiple antibiotics, while hemolysis was more prevalent in susceptible isolates and associated with stronger biofilms. Phylogroups B2 and D predominated, with lower resistance and stronger biofilms in group B2. ERIC-PCR revealed considerable diversity among the isolates.
This research highlights the dissemination of resistance in UPEC in Tanta, Egypt. The evident correlation between biofilm and resistance suggests a resistance cost on bacterial cells; and that isolates with lower resistance may rely on biofilms to enhance their survival. This emphasizes the importance of considering biofilm formation ability during the treatment of UPEC infections to avoid therapeutic failure and/or infection recurrence.
Alshaikh SA
,El-Banna T
,Sonbol F
,Farghali MH
... -
《Annals of Clinical Microbiology and Antimicrobials》