Dexmedetomidine Resists Intestinal Ischemia-Reperfusion Injury by Inhibiting TLR4/MyD88/NF-κB Signaling.

来自 PUBMED

作者:

Yang JWu YXu YJia JXi WDeng HTu W

展开

摘要:

Intestinal ischemia/reperfusion (I/R) is a common clinical problem that occurs during various clinical pathological processes. Dexmedetomidine (DEX), a widely used anesthetic adjuvant agent, can induce protection against intestinal I/R in vivo; however, the underlying mechanism is not fully understood. In the present study, we aimed to investigate the protective effects of DEX and examine whether its mechanism was associated with the TLR4/MyD88/NF-κB signaling pathway. Sprague-Dawley rats were pretreated with DEX and then subjected to I/R-induced intestinal injury. In vivo, intestinal histopathological examination and scoring were performed, the levels of serum intestinal fatty acid-binding protein (I-FABP), intestinal tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and expression levels of TLR4, MyD88, and NF-κB in the intestine were determined. In in vitro experiments, the human colon carcinoma cell line (Caco-2) was incubated with DEX before deprivation/reoxygenation (OGD/R) treatment. The cell viability of Caco-2 cells, the levels of lactate dehydrogenase (LDH), TNF-α, and IL-1β in the supernatant, as well as protein expression of TLR4, MyD88, and NF-κB in Caco-2 cells, were measured. Statistical analysis was performed using SPSS version 21.0. DEX preconditioning significantly reduced the intestinal pathological Chiu's score, serum I-FABP, intestinal TNF-α, IL-1β levels, and the protein expression of TLR4, MyD88, and NF-κB in the rats with intestinal I/R injury. Similarly, in vitro, DEX pretreatment protected against OGD/R-induced Caco-2 cell damage and inhibited TLR4/MyD88/NF-κB signaling, as evidenced by increased cell viability, decreased LDH activity, reduced TNF-α and IL-1β levels, as well as downregulated TLR4, MyD88, and NF-κB protein levels. Our findings suggested that DEX could reduce intestinal I/R injury in rats and OGD/R damage in Caco-2 cells, and this protection might be attributed to antiinflammatory effects and inhibition of the TLR4/MyD88/NF-κB signaling pathway.

收起

展开

DOI:

10.1016/j.jss.2020.11.041

被引量:

19

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(909)

参考文献(0)

引证文献(19)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读