ATP-sensitive K(+) channels control the spontaneous firing of a glycinergic interneuron in the auditory brainstem.

来自 PUBMED

作者:

Strazza PS Jrde Siqueira DVFLeão RM

展开

摘要:

Cartwheel neurons provide potent inhibition to fusiform neurons in the dorsal cochlear nucleus (DCN). Most cartwheel neurons fire action potentials spontaneously, but the ion channels responsible for this intrinsic activity are unknown. We investigated the ion channels responsible for the intrinsic firing of cartwheel neurons and the stable resting membrane potential found in a fraction of these neurons (quiet neurons). Among the ion channels controlling membrane potential of cartwheel neurons, the presence of open ATP-sensitive potassium channels (KATP ) is responsible for the existence of quiet neurons. Our results pinpoint KATP channel modulation as a critical factor controlling the firing of cartwheel neurons. Hence, it is a crucial channel influencing the balance of excitation and inhibition in the DCN. Cartwheel neurons from the dorsal cochlear nucleus (DCN) are glycinergic interneurons and the primary source of inhibition on the fusiform neurons, the DCN's principal excitatory neuron. Most cartwheel neurons present spontaneous firing (active neurons), producing a steady inhibitory tone on fusiform neurons. In contrast, a small fraction of these neurons do not fire spontaneously (quiet neurons). Hyperactivity of fusiform neurons is seen in animals with behavioural evidence of tinnitus. Because of its relevance in controlling the excitability of fusiform neurons, we investigated the ion channels responsible for the spontaneous firing of cartwheel neurons in DCN slices from rats. We found that quiet neurons presented an outward conductance not seen in active neurons, which generates a stable resting potential. This current was sensitive to tolbutamide, an ATP-sensitive potassium channel (KATP ) antagonist. After inhibition with tolbutamide, quiet neurons start to fire spontaneously, while the active neurons were not affected. On the other hand, in active neurons, KATP agonist diazoxide activated a conductance similar to quiet neurons' KATP conductance and stopped spontaneous firing. According to the effect of KATP channels on cartwheel neuron firing, glycinergic neurotransmission in DCN was increased by tolbutamide and decreased by diazoxide. Our results reveal a role of KATP channels in controlling the spontaneous firing of neurons not involved in fuel homeostasis.

收起

展开

DOI:

10.1113/JP280233

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(111)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读