A tool for patient-specific prediction of delivery discrepancies in machine parameters using trajectory log files.

来自 PUBMED

作者:

Chuang KCGiles WAdamson J

展开

摘要:

Multileaf collimator (MLC) delivery discrepancy between planned and actual (delivered) positions have detrimental effect on the accuracy of dose distributions for both IMRT and VMAT. In this study, we evaluated the consistency of MLC delivery discrepancies over the course of treatment and over time to verify that a predictive machine learning model would be applicable throughout the course of treatment. Next, the MLC and gantry positions recorded in prior trajectory log files were analyzed to build a machine learning algorithm to predict MLC positional discrepancies during delivery for a new treatment plan. An open source tool was developed and released to predict the MLC positional discrepancies at treatment delivery for any given plan. Trajectory log files of 142 IMRT plans and 125 VMAT plans from 9 Varian TrueBeam linear accelerators were collected and analyzed. The consistency of delivery discrepancy over patient-specific quality assurance (QA) and patient treatment deliveries was evaluated. Data were binned by treatment site and machine type to determine their relationship with MLC and gantry angle discrepancies. Motion-related parameters including MLC velocity, MLC acceleration, control point, dose rate, and gravity vector, gantry velocity and gantry acceleration, where applicable, were analyzed to evaluate correlations with MLC and gantry discrepancies. Several regression models, such as simple/multiple linear regression, decision tree, and ensemble method (boosted tree and bagged tree model) were used to develop a machine learning algorithm to predict MLC discrepancy based on MLC motion parameters. MLC discrepancies at patient-specific QA differed from those at patient treatment deliveries by a small (mean = 0.0021 ± 0.0036 mm, P = 0.0089 for IMRT; mean = 0.0010 ± 0.0016 mm, P = 0.0003 for VMAT) but statistically significant amount, likely due to setting the gantry angle to zero for QA in IMRT. MLC motion parameters, MLC velocity and gravity vector, showed significant correlation (P < 0.001) with MLC discrepancy, especially MLC velocity, which had an approximately linear relationship (slope = -0.0027, P < 0.001, R2  = 0.79). Incorporating MLC motion parameters, the final generalized model trained by data from all linear accelerators can predict MLC discrepancy to a high degree of accuracy with high correlation (R2  = 0.86) between predicted and actual MLC discrepancies. The same prediction results were found across different treatment sites and linear accelerators. We have developed a machine learning model using trajectory log files to predict the MLC discrepancies during delivery. This model has been a released as a research tool in which a DICOM-RT with predicted MLC positions can be generated using the original DICOM-RT file as input. This tool can be used to simulate radiotherapy treatment delivery and may be useful for studies evaluating plan robustness and dosimetric uncertainties from treatment delivery.

收起

展开

DOI:

10.1002/mp.14670

被引量:

8

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(263)

参考文献(0)

引证文献(8)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读