Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study.

来自 PUBMED

作者:

Bellemo VLim ZWLim GNguyen QDXie YYip MYTHamzah HHo JLee XQHsu WLee MLMusonda LChandran MChipalo-Mutati GMuma MTan GSWSivaprasad SMenon GWong TYTing DSW

展开

摘要:

Radical measures are required to identify and reduce blindness due to diabetes to achieve the Sustainable Development Goals by 2030. Therefore, we evaluated the accuracy of an artificial intelligence (AI) model using deep learning in a population-based diabetic retinopathy screening programme in Zambia, a lower-middle-income country. We adopted an ensemble AI model consisting of a combination of two convolutional neural networks (an adapted VGGNet architecture and a residual neural network architecture) for classifying retinal colour fundus images. We trained our model on 76 370 retinal fundus images from 13 099 patients with diabetes who had participated in the Singapore Integrated Diabetic Retinopathy Program, between 2010 and 2013, which has been published previously. In this clinical validation study, we included all patients with a diagnosis of diabetes that attended a mobile screening unit in five urban centres in the Copperbelt province of Zambia from Feb 1 to June 31, 2012. In our model, referable diabetic retinopathy was defined as moderate non-proliferative diabetic retinopathy or worse, diabetic macular oedema, and ungradable images. Vision-threatening diabetic retinopathy comprised severe non-proliferative and proliferative diabetic retinopathy. We calculated the area under the curve (AUC), sensitivity, and specificity for referable diabetic retinopathy, and sensitivities of vision-threatening diabetic retinopathy and diabetic macular oedema compared with the grading by retinal specialists. We did a multivariate analysis for systemic risk factors and referable diabetic retinopathy between AI and human graders. A total of 4504 retinal fundus images from 3093 eyes of 1574 Zambians with diabetes were prospectively recruited. Referable diabetic retinopathy was found in 697 (22·5%) eyes, vision-threatening diabetic retinopathy in 171 (5·5%) eyes, and diabetic macular oedema in 249 (8·1%) eyes. The AUC of the AI system for referable diabetic retinopathy was 0·973 (95% CI 0·969-0·978), with corresponding sensitivity of 92·25% (90·10-94·12) and specificity of 89·04% (87·85-90·28). Vision-threatening diabetic retinopathy sensitivity was 99·42% (99·15-99·68) and diabetic macular oedema sensitivity was 97·19% (96·61-97·77). The AI model and human graders showed similar outcomes in referable diabetic retinopathy prevalence detection and systemic risk factors associations. Both the AI model and human graders identified longer duration of diabetes, higher level of glycated haemoglobin, and increased systolic blood pressure as risk factors associated with referable diabetic retinopathy. An AI system shows clinically acceptable performance in detecting referable diabetic retinopathy, vision-threatening diabetic retinopathy, and diabetic macular oedema in population-based diabetic retinopathy screening. This shows the potential application and adoption of such AI technology in an under-resourced African population to reduce the incidence of preventable blindness, even when the model is trained in a different population. National Medical Research Council Health Service Research Grant, Large Collaborative Grant, Ministry of Health, Singapore; the SingHealth Foundation; and the Tanoto Foundation.

收起

展开

DOI:

10.1016/S2589-7500(19)30004-4

被引量:

105

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1220)

参考文献(0)

引证文献(105)

来源期刊

The Lancet Digital Health

影响因子:36.578

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读