A novel integrated system using patient-derived glioma cerebral organoids and xenografts for disease modeling and drug screening.

来自 PUBMED

作者:

Zhang LLiu FWeygant NZhang JHu PQin ZYang JCheng QFan FZeng YTang YLi YTang AHe FPeng JLiao WHu ZLi MLiu Z

展开

摘要:

A physiologically relevant glioma tumor model is important to the study of disease progression and screening drug candidates. However, current preclinical glioma models lack the brain microenvironment, and the established tumor cell lines do not represent glioma biology and cannot be used to evaluate the therapeutic effect. Here, we reported a real-time integrated system by generating 3D ex vivo cerebral organoids and in vivo xenograft tumors based on glioma patient-derived tissues and cells. Our system faithfully recapitulated the histological features, response to chemotherapy drugs, and clinical progression of their corresponding parental tumors. Additionally, our model successfully identified a case from a grade II astrocytoma patient with typical grade IV GBM features in both organoids and xenograft models, which mimicked the disease progression of this patient. Further genomic and transcriptomic characterization was associated with individual clinical features. We have demonstrated the "GBM-&Normal-like" signature to predict prognosis. In conclusion, we developed an integrated system of parallel models from patient-derived glioma cerebral organoids and xenografts for understanding the glioma biology and prediction of response to chemotherapy drugs, which might lead to a new strategy for personalized treatment for this deadly disease.

收起

展开

DOI:

10.1016/j.canlet.2020.12.013

被引量:

27

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(200)

参考文献(0)

引证文献(27)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读