Development and clinical validation of a robust knowledge-based planning model for stereotactic body radiotherapy treatment of centrally located lung tumors.

来自 PUBMED

作者:

Visak JMcGarry RCRandall MEPokhrel D

展开

摘要:

To develop a robust and adaptable knowledge-based planning (KBP) model with commercially available RapidPlanTM for early stage, centrally located non-small-cell lung tumors (NSCLC) treated with stereotactic body radiotherapy (SBRT) and improve a patient's"simulation to treatment" time. The KBP model was trained using 86 clinically treated high-quality non-coplanar volumetric modulated arc therapy (n-VMAT) lung SBRT plans with delivered prescriptions of 50 or 55 Gy in 5 fractions. Another 20 independent clinical n-VMAT plans were used for validation of the model. KBP and n-VMAT plans were compared via Radiation Therapy Oncology Group (RTOG)-0813 protocol compliance criteria for conformity (CI), gradient index (GI), maximal dose 2 cm away from the target in any direction (D2cm), dose to organs-at-risk (OAR), treatment delivery efficiency, and accuracy. KBP plans were re-optimized with larger calculation grid size (CGS) of 2.5 mm to assess feasibility of rapid adaptive re-planning. Knowledge-based plans were similar or better than n-VMAT plans based on a range of target coverage and OAR metrics. Planning target volume (PTV) for validation cases was 30.5 ± 19.1 cc (range 7.0-71.7 cc). KBPs provided an average CI of 1.04 ± 0.04 (0.97-1.11) vs. n-VMAT plan'saverage CI of 1.01 ± 0.04 (0.97-1.17) (P < 0.05) with slightly improved GI with KBPs (P < 0.05). D2cm was similar between the KBPs and n-VMAT plans. KBPs provided lower lung V10Gy (P = 0.003), V20Gy (P = 0.007), and mean lung dose (P < 0.001). KBPs had overall better sparing of OAR at the minimal increased of average total monitor units and beam-on time by 460 (P < 0.05) and 19.2 s, respectively. Quality assurance phantom measurement showed similar treatment delivery accuracy. Utilizing a CGS of 2.5 mm in the final optimization improved planning time (mean, 5 min) with minimal or no cost to the plan quality. The RTOG-compliant adaptable RapidPlan model for early stage SBRT treatment of centrally located lung tumors was developed. All plans met RTOG dosimetric requirements in less than 30 min of planning time, potentially offering shorter "simulation to treatment" times. OAR sparing via KBPs may permit tumorcidal dose escalation with minimal penalties. Same day adaptive re-planning is plausible with a 2.5-mm CGS optimizer setting.

收起

展开

DOI:

10.1002/acm2.13120

被引量:

5

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(653)

参考文献(24)

引证文献(5)

来源期刊

Journal of Applied Clinical Medical Physics

影响因子:2.241

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读