CT-based radiomics nomogram for preoperative prediction of No.10 lymph nodes metastasis in advanced proximal gastric cancer.

来自 PUBMED

作者:

Wang LGong JHuang XLin GZheng BChen JXie JLin RDuan QLin W

展开

摘要:

Preoperative diagnosis of No.10 lymph nodes (LNs) metastases in advanced proximal gastric cancer (APGC) patients remains a challenge. The aim of this study was to develop a CT-based radiomics nomogram for identification of No.10 LNs status in APGCs. A total of 515 patients with primary APGCs were retrospectively selected and divided into a training cohort (n = 340) and a validation cohort (n = 175). Total incidence of No.10 LNM was 12.4% (64/515). CT based radiomics nomogram combining with radiomic signature calculated from venous CT imaging features and CT-defined No.10 LNs status evaluated by radiologists was built and tested to predict the No.10 LNs status in APGCs. CT based radiomics nomogram yielded classification accuracy with areas under ROC curves, AUC = 0.896 and 0.814 in training and validation cohort, respectively, while radiomic signature and radiologist' diagnosis based on contrast-enhanced CT images yielded lower AUCs ranging in 0.742-0.866 and 0.619-0.685, respectively. In the specificity higher than 80%, the sensitivity of using radiomics nomogram, radiomic signature and radiologists' evaluation to detect No.10 LNs positive cases was 82.8% (53/64), 67.2% (43/64) and 39.1% (25/64), respectively. The CT-based radiomics nomogram provides a promising and more effective method to yield high accuracy in identification of No.10 LNs metastases in APGC patients.

收起

展开

DOI:

10.1016/j.ejso.2020.11.132

被引量:

12

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(309)

参考文献(0)

引证文献(12)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读