TOX-expressing terminally exhausted tumor-infiltrating CD8(+) T cells are reinvigorated by co-blockade of PD-1 and TIGIT in bladder cancer.

来自 PUBMED

作者:

Han HSJeong SKim HKim HDKim ARKwon MPark SHWoo CGKim HKLee KHSeo SPKang HWKim WTKim WJYun SJShin EC

展开

摘要:

Exhausted T cells in the tumor microenvironment are major targets of immunotherapies. However, the exhaustion status of CD8+ tumor-infiltrating lymphocytes (TILs) in bladder cancer has not been comprehensively evaluated. Herein, we examined distinct exhaustion status of CD8+ TILs based on the level of programmed cell death-1 (PD-1) and thymocyte selection-associated high mobility group box protein (TOX) expression in urothelial bladder cancer. We also evaluated the reinvigoration of exhausted CD8+ TILs upon ex vivo treatment with inhibitory checkpoint blockers. TOX-expressing PD-1highCD8+ TILs had the highest expression of immune checkpoint receptors (ICRs), the most terminally exhausted features, and the highest tumor antigen reactivity among PD-1+CD8+ TILs. Bladder cancer patients with a high percentage of PD-1highTOX+CD8+ TILs had more progressed T-cell exhaustion features and higher programmed death-ligand 1 expression in tumor tissues. TIGIT was the most frequent co-expressed ICR on PD-1+CD8+ TILs, and TIGIT blockade enhanced the PD-1 blockade-mediated cytokine production by CD8+ TILs from bladder cancer patients. Our findings provide an improved understanding of the heterogeneous exhaustion status of CD8+ TILs and additional immunotherapy strategies to improve outcomes of bladder cancer patients.

收起

展开

DOI:

10.1016/j.canlet.2020.11.035

被引量:

36

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1035)

参考文献(0)

引证文献(36)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读