Development and validation of a novel survival model for head and neck squamous cell carcinoma based on autophagy-related genes.

来自 PUBMED

作者:

Ren ZZhang LDing WLuo YShi ZShrestha BKan XZhang ZDing JHe HHu X

展开

摘要:

In view of the critical role of autophagy-related genes (ARGs) in the pathogenesis of various diseases including cancer, this study aims to identify and evaluate the potential value of ARGs in head and neck squamous cell carcinoma (HNSCC). RNA sequencing and clinical data in The Cancer Genome Atlas (TCGA) were analyzed by univariate Cox regression analysis and Lasso Cox regression analysis model established a novel 13- autophagy related prognostic genes, which were used to build a prognostic risk model. A multivariate Cox proportional regression model and the survival analysis were used to evaluate the prognostic risk model. Moreover, the efficiency of prognostic risk model was tested by receiver operating characteristic (ROC) curve analysis based on data from TCGA database and Gene Expression Omnibus (GEO). Besides, the other independent datasets from Human Protein Atlas dataset (HPA) also applied. 13 ARGs (GABARAPL1, ITGA3, USP10, ST13, MAPK9, PRKN, FADD, IKBKB, ITPR1, TP73, MAP2K7, CDKN2A, and EEF2K) with prognostic value were identified in HNSCC patients. Subsequently, a prognostic risk model was established based on 13 ARGs, and significantly stratified HNSCC patients into high- and low-risk groups in terms of overall survival (OS) (HR = 0.379,95% CI: 0.289-0.495, p < 0.0001). The multivariate Cox analysis revealed that this model was an independent prognostic factor (HR = 1.506, 95% CI = 1.330-1.706, P < 0.001). The areas under the ROC curves (AUC) were significant for both the TCGA and GEO, with AUC of 0.685 and 0.928 respectively. Functional annotation revealed that model significantly enriched in many critical pathways correlated with tumorigenesis, including the p53 pathway, IL2 STAT5 signaling, TGF beta signaling, PI3K Ak mTOR signaling by gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA). In addition, we developed a nomogram shown some clinical net could be used as a reference for clinical decision-making. Collectively, we developed and validated a novel robust 13-gene signatures for HNSCC prognosis prediction. The 13 ARGs could serve as an independent and reliable prognostic biomarkers and therapeutic targets for the HNSCC patients.

收起

展开

DOI:

10.1016/j.ygeno.2020.11.017

被引量:

24

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(649)

参考文献(0)

引证文献(24)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读