Projection of future temperature extremes, related mortality, and adaptation due to climate and population changes in Taiwan.

来自 PUBMED

作者:

Chen CCWang YRWang YCLin SLChen CTLu MMGuo YL

展开

摘要:

Extreme temperature events have been observed to appear more frequently and with greater intensity in Taiwan in recent decades due to climate change, following the global trend. Projections of temperature extremes across different climate zones and their impacts on related mortality and adaptation have not been well studied. We projected site-specific future temperature extremes by statistical downscaling of 8 global climate models followed by Bayesian model averaging from 2021 to 2060 across Taiwan under the representative concentration pathway (RCP) scenarios RCP2.6, RCP4.5, and RCP8.5. We then calculated the attributable mortality (AM) in 6 municipalities and in the eastern area by multiplying the city/county- and degree-specific relative risk of mortality according to the future population projections. We estimated the degree of adaptation to heat by slope reduction of the projected AM to be comparable with that in 2018. The annual number of hot days with mean temperatures over 30 °C was predicted to have a substantial 2- to 5-fold increase throughout the residential areas of Taiwan by the end of 2060 under RCP8.5, whereas the decrease in cold days was less substantial. The decrease in cold-related mortality below 15 °C was projected to outweigh heat-related mortality for the next two decades, and then heat-related mortality was predicted to drastically increase and cross over cold-related mortality, surpassing it from 2045 to 2055. Adjusting for future population size, the percentage increase in heat-related deaths per 100,000 people could increase by more than 10-fold under the worst scenario (RCP8.5), especially for those over 65 years old. The heat-related impacts will be most severe in southern Taiwan, which has a tropical climate. There is a very high demand for heat-adaptation prior to 2050 under all RCP scenarios. Spatiotemporal variations in AM in cities in different climate zones are projected in Taiwan and are expected to have a net negative effect in the near future before shifting to a net positive effect from 2045 to 2055. However, there is an overall positive and increasing trend of net effect for elderly individuals under all the emission scenarios. Active adaptation plans need to be well developed to face future challenges due to climate change, especially for the elderly population in central and southern Taiwan.

收起

展开

DOI:

10.1016/j.scitotenv.2020.143373

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(650)

参考文献(0)

引证文献(4)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读