Refining dataset curation methods for deep learning-based automated tuberculosis screening.

来自 PUBMED

作者:

Kim TKYi PHHager GDLin CT

展开

摘要:

The study objective was to determine whether unlabeled datasets can be used to further train and improve the accuracy of a deep learning system (DLS) for the detection of tuberculosis (TB) on chest radiographs (CXRs) using a two-stage semi-supervised approach. A total of 111,622 CXRs from the National Institute of Health ChestX-ray14 database were collected. A cardiothoracic radiologist reviewed a subset of 11,000 CXRs and dichotomously labeled each for the presence or absence of potential TB findings; these interpretations were used to train a deep convolutional neural network (DCNN) to identify CXRs with possible TB (Phase I). The best performing algorithm was then used to label the remaining database consisting of 100,622 radiographs; subsequently, these newly-labeled images were used to train a second DCNN (phase II). The best-performing algorithm from phase II (TBNet) was then tested against CXRs obtained from 3 separate sites (2 from the USA, 1 from China) with clinically confirmed cases of TB. Receiver operating characteristic (ROC) curves were generated with area under the curve (AUC) calculated. The phase I algorithm trained using 11,000 expert-labelled radiographs achieved an AUC of 0.88. The phase II algorithm trained on images labeled by the phase I algorithm achieved an AUC of 0.91 testing against a TB dataset obtained from Shenzhen, China and Montgomery County, USA. The algorithm generalized well to radiographs obtained from a tertiary care hospital, achieving an AUC of 0.87; TBNet's sensitivity, specificity, positive predictive value, and negative predictive value were 85%, 76%, 0.64, and 0.9, respectively. When TBNet was used to arbitrate discrepancies between 2 radiologists, the overall sensitivity reached 94% and negative predictive value reached 0.96, demonstrating a synergistic effect between the algorithm's output and radiologists' interpretations. Using semi-supervised learning, we trained a deep learning algorithm that detected TB at a high accuracy and demonstrated value as a CAD tool by identifying relevant CXR findings, especially in cases that were misinterpreted by radiologists. When dataset labels are noisy or absent, the described methods can significantly reduce the required amount of curated data to build clinically-relevant deep learning models, which will play an important role in the era of precision medicine.

收起

展开

DOI:

10.21037/jtd.2019.08.34

被引量:

11

年份:

2020

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(243)

参考文献(20)

引证文献(11)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读