-
Hyperoside ameliorates the progression of osteoarthritis: An in vitro and in vivo study.
Osteoarthritis (OA) is a common degenerative joint disease. The pathogenesis of OA is closely related to inflammatory responses and apoptosis of chondrocytes. Hyperoside (Hyp), a natural flavonoid compound, exerts multiple bioactivities in various diseases.
Our study aims to investigate the anti-arthritic effects of Hyp and delineate the potential mechanism at the cellular level.
Murine chondrocytes were stimulated with interleukin-1β (IL-1β) with or without Hyp treatment. CCK-8 assay was used to evaluate the cytotoxic effect of Hyp. DCFH-DA was used to detect intracellular ROS. Annexin V-FITC/PI method was applied to examine apoptosis of chondrocytes. The anti-arthritic effects of Hyp and related mechanisms were investigated by examining and analyzing relative markers through quantitative PCR, western blot analysis and immunofluorescent staining. C57BL/6 mice were performed the destabilized medial meniscus (DMM) surgery to establish OA model and then injected intraperitoneally with Hyp (20 mg/kg)) for 4 or 8 weeks. Finally, mice were sacrificed and knee joints were collected for histological observation and analysis.
Hyp inhibited IL-1β-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Additionally, Hyp attenuated IL-1β-induced destruction of the extracellular matrix (ECM) by downregulating the expression of MMPs and ADAMTS5, and meanwhile upregulating the expression of collagen II, aggrecan, and SOX9. Also, Hyp pretreatment reduced IL-1β-induced overproduction of ROS and apoptosis of chondrocytes. Mechanistically, Hypexerted anti-inflammatory effects by partly suppressing the PI3K/AKT/NF-κB and the MAPK signaling pathways, enhancing the Nrf2/HO-1 to limit the activation of NF-κB. Moreover, Hyp played an anti-apoptotic effect via the Nrf2/ROS/BAX/Bcl-xlaxis. In vivo, cartilage degradation was attenuated with a lower OARSI score in Hyp-treated group compared to the DMM group.
Our study demonstrated that anti-arthritic effects of Hyp in vitro and in vivo, indicating Hyp might serve as a potential agent for the treatment of OA.
Sun K
,Luo J
,Jing X
,Xiang W
,Guo J
,Yao X
,Liang S
,Guo F
,Xu T
... -
《-》
-
Oroxin B alleviates osteoarthritis through anti-inflammation and inhibition of PI3K/AKT/mTOR signaling pathway and enhancement of autophagy.
Osteoarthritis (OA) is a common aging-related degenerative joint disease with chronic inflammation as its possible pathogenesis. Oroxin B (OB), a flavonoid isolated from traditional Chinese herbal medicine, possesses anti-inflammation properties which may be involved in regulating the pathogenesis of OA, but its mechanism has not been elucidated. Our study was the first to explore the potential chondroprotective effect and elucidate the underlying mechanism of OB in OA.
In vitro, primary mice chondrocytes were stimulated with IL-1β along with or without the administration of OB or autophagy inhibitor 3-methyladenine (3-MA). Cell viability assay was measured with a cell counting kit-8 (CCK-8). The phenotypes of anabolic-related (Aggrecan and Collagen II), catabolic-related (MMP3, MMP13, and ADAMTS5), inflammation-related (iNOS, COX-2, TNF-α, IL-6, and IL-1β), and markers of related signaling pathways in chondrocytes with different treatment were detected through western blot, RT-qPCR, and immunofluorescent staining. In vivo, the destabilized medial meniscus (DMM) operation was performed to establish the OA mice model. After knee intra-articular injection with OB for 8 weeks, the mice's knee joints were obtained for subsequent histological staining and analysis.
OB reversed the expression level of anabolic-related proteins (Aggrecan and Collagen II) and catabolic-related (MMP3, MMP13, and ADAMTS5) in IL-1β-induced chondrocytes. Mechanistically, OB suppressed the inflammatory response stimulated by IL-1β, as the inflammation-related (iNOS, COX-2, TNF-α, IL-6, and IL-1β) markers were downregulated after the administration of OB in IL-1β-induced chondrocytes. Besides, the activation of PI3K/AKT/mTOR signaling pathway induced by IL-1β could be inhibited by OB. Additionally, the autophagy process impaired by IL-1β could be rescued by OB. What's more, the introduction of 3-MA to specifically inhibit the autophagic process impairs the protective effect of OB on cartilage. In vivo, histological staining revealed that intra-articular injection of OB attenuated the cartilage degradation, as well as reversed the expression level of anabolic and catabolic-related proteins such as Aggrecan, Collagen II, and MMP13 induced in DMM-induced OA models.
The study verified that OB exhibited the chondroprotective effect by anti-inflammatory, inhibiting the PI3K/AKT/mTOR signaling pathway, and enhancing the autophagy process, indicating that OB might be a promising agent for the treatment of OA.
Lu R
,He Z
,Zhang W
,Wang Y
,Cheng P
,Lv Z
,Yuan X
,Guo F
,You H
,Chen AM
,Hu W
... -
《Frontiers in Endocrinology》
-
Sinomenine contributes to the inhibition of the inflammatory response and the improvement of osteoarthritis in mouse-cartilage cells by acting on the Nrf2/HO-1 and NF-κB signaling pathways.
Pathological changes, such as articular cartilage degeneration, destruction, and hyperosteogeny, are regarded as the main features of osteoarthritis (OA). Sinomenine (SIN) is a monomeric component purified from the plant Sinomenium acutum which has been found to have anti-inflammatory effects, however, the mechanism of action of SIN on OA is not clear. In this study, we evaluated whether SIN could regulate the inflammatory response induced by interleukin (IL)-1β and improve outcomes in the instability model of OA (medial meniscus mice (DMM)) by acting on the Nrf2/HO-1 and NF-κ B signaling pathways in chondrocytes. From our experiments, which include Griess reaction, ELISA, Western blot, and immunofluorescence, we found that SIN not only down-regulated the expression of pro-inflammatory factors induced by IL-1β, including; inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nitricoxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), but also decreased the production of IL-1β-induced cartilage matrix catabolic enzymes including; ADAMTS-5 and MMPs, in mouse chondrocytes. In addition, the degradation of aggrecan and type II collagen protein in the extracellular matrix (ECM) stimulated by IL-1β was reversed. Most importantly, we have revealed for the first time that in OA, SIN inhibited the inflammatory response and ECM degradation by activating the Nrf2/HO-1 signaling pathways and inhibiting NF-κB activity in mouse-cartilage cells. In in vivo experiments, SIN treatment helped to improve the cartilage destruction in OA model mice. In conclusion, this study has demonstrated that SIN inhibits the IL-1β-induced inflammatory response and cartilage destruction by activating the Nrf2/HO-1 signaling pathway and inhibiting the NF-κB signaling pathway in mouse chondrocytes, suggesting a new use for SIN in the treatment of OA.
Wu Y
,Lin Z
,Yan Z
,Wang Z
,Fu X
,Yu K
... -
《-》
-
Activation of Nrf2/HO-1 signal with Myricetin for attenuating ECM degradation in human chondrocytes and ameliorating the murine osteoarthritis.
Osteoarthritis (OA), one of the prevailing joint degenerative disorders, contributes to the disability around the world. However, no effective therapeutic was introduced currently. Myricetin was reported to possess the function of anti-inflammatory, anti-diabetic and anti-cancer. Thus, we investigate the protection role of myricetin in OA progression and the potential molecular mechanism in present study.
Quantitative realtime PCR and western blotting were performed to evaluate the expression of MMP-13, Aggrecan, iNOS, and COX-2 at both gene and protein levels. An enzyme-linked immunosorbent assay was used to evaluate the levels of inflammatory factors (PGE2, TNF-α, and IL-6). The PI3K/AKT, Nrf2/HO-1 and nuclear factor kappa B (NF-κB) signaling pathways were analyzed by western blotting, and immunofluorescence was used to assess the expression of Nrf2, Collagen II and MMP13. The in vitro effect of myricetin was evaluated by intragastric administration into a mouse osteoarthritis model induced by destabilization of the medial meniscus.
Myricetin not only inhibited the generation of inflammatory mediators and cytokines such as nitric oxide (NO), prostaglandin E2 (PGE2), TNF-α and IL-6, but also suppressed the production of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in human chondrocytes under IL-1β stimulation. Moreover, Metalloproteinase 13 (MMP13) and thrombospondin motifs 5 (ADAMTS5), which resulted in the degradation of cartilage, were also suppressed in chondrocytes with the treatment of myricetin. To explore the potential mechanism, we found out that myricetin suppressed NF-κB signaling pathway through Nrf2/HO-1 axis in human chondrocytes. Besides, myricetin regulated the Nrf2 signaling pathway through PI3K/Akt pathway. In addition, in vivo study demonstrated that myricetin could ameliorated the progression of OA in mice DMM model through PI3K/Akt mediated Nrf2 signaling pathway.
Taken together, our data first demonstrated that myricetin possesses the therapeutic potential on OA through PI3K/Akt mediated Nrf2/HO-1 signaling pathway.
Pan X
,Chen T
,Zhang Z
,Chen X
,Chen C
,Chen L
,Wang X
,Ying X
... -
《-》
-
Aucubin Protects Chondrocytes Against IL-1β-Induced Apoptosis In Vitro And Inhibits Osteoarthritis In Mice Model.
Chondrocyte apoptosis has also been strongly correlated with the severity of cartilage damage and matrix depletion in an osteoarthritis (OA) joint. Therefore, pharmacological inhibitors of apoptosis may provide a novel treatment option for patients with OA. Aucubin, a natural compound isolated from Eucommia ulmoides, has been proved to possess antioxidative and anti-apoptotic properties. However, anti-osteoarthritis effect of aucubin in animal model and anti-apoptotic response of aucubin in OA chondrocytes remain unclear. This study aimed to determine whether aucubin could slow progression of OA in a mouse model and inhibit the IL-1β-induced chondrocyte apoptosis.
OA severity and articular cartilage degradation were evaluated by Safranin-O staining, Hematoxylin-eosin (H&E) staining, and Osteoarthritis Research Society International (OARSI) standards. Chondrocyte viability was observed by Cell Counting Kit-8 (CCK8) and live/dead cells assay; the apoptotic rate of chondrocytes was evaluated by flow cytometry (FCM) with Annexin V-FITC/PI kit. Mediators of apoptosis were tested by Western blot of Bax, caspase-3, caspase-9, and Bcl-2 expression. The intracellular levels of Reactive oxygen species (ROS) were assessed by the probe of 2,7-Dichlorofluorescin diacetate (DCFH-DA).
The articular cartilage in the limb with destabilization of the medial meniscus (DMM) exhibited early OA-like manifestations characterized by proteoglycan loss, cartilage fibrillation, and erosion, with lower OARSI score. Oral administration of aucubin remarkably attenuated the loss of proteoglycan and the articular cartilage erosion and decreased the OARSI scores underwent DMM surgery. Aucubin treatment significantly reverses IL-1β-induced cytotoxicity and attenuated the IL-1β-induced chondrocyte apoptosis. In addition, aucubin can significantly inhibit mediators of apoptosis in rat primary chondrocytes. Furthermore, aucubin remarkably attenuated the IL-1β-induced intracellular ROS production.
Our findings suggest that aucubin has a protective effect on articular cartilage and slowing progression of OA in a mouse model. This protective effect may result from inhibiting chondrocyte apoptosis and excessive ROS production.
Wang BW
,Jiang Y
,Yao ZL
,Chen PS
,Yu B
,Wang SN
... -
《Drug Design Development and Therapy》