The structural similarity index for IMRT quality assurance: radiomics-based error classification.

来自 PUBMED

作者:

Ma CWang RZhou SWang MYue HZhang YWu H

展开

摘要:

The implementation of radiomics and machine learning (ML) techniques on analyzing two-dimensional gamma maps has been demonstrated superior to the conventional gamma analysis for error identification in intensity modulated radiotherapy (IMRT) quality assurance (QA). Recently, the Structural SIMilarity (SSIM) sub-index maps were shown to be able to reveal the error types of the dose distributions. In this study, we aimed to apply radiomics analysis on SSIM sub-index maps and develop ML models to classify delivery errors in patient-specific dynamic IMRT QA. Twenty-one sliding-window IMRT plans of 180 beams for three treatment sites were involved in this study. Four types of machine-related errors of various magnitudes were simulated for each beam at each control point, including the monitor unit (MU) variations, same-directional and opposite-directional shifts of the multileaf collimators (MLCs) and random mispositioning of the MLCs. In the QA process, a total of 1620 portal dose (PD) images were acquired for the beams with and without errors. The predicted PD images of the original beams were set as references. To quantify the agreement between a measured PD image and the corresponding predicted PD image, four difference maps including three SSIM sub-index maps, and one dose difference-derived map were calculated. Then, radiomic features were extracted from the four difference maps of each measured PD image. We tested four typical classifiers including linear discriminant classifier (LDC), two supporting vector machine (SVM) classifiers, and random forest (RF) for this multiclass classification task. A nested cross-validation scheme was used for model evaluations, where the SVM recursive feature elimination method was applied for feature selection. Finally, the performance of the ML model on identifying the error-free and the erroneous cases was compared to that of the conventional gamma analysis. The statistics of the selected features showed that all of the difference maps and the feature categories made balanced contributions to solve this classification task. Best performance was achieved by the Linear-SVM model with average overall classification accuracy of 0.86. Specifically, the average classification accuracies of the shift, opening, and the random errors were around 0.9. Moreover, ~80% of error-free and MU errors were correctly classified. Using gamma analysis, the 3 mm/3% criterion was found insensitive to errors (sensitivity was only 0.33). Although the sensitivity to errors with the 2 mm/2% criterion increased to 0.79, still 8% worse than that of the ML model. We proposed an ML-based method for machine-related error identification in patient-specific dynamic IMRT QA, where radiomic analysis on SSIM sub-index maps were used for feature extraction. With extensive validation to select the best features and classifiers, high accuracies in error classification were achieved. Compared with the conventional gamma threshold method, this approach has great potential in error identification for the patient-specific IMRT QA process.

收起

展开

DOI:

10.1002/mp.14559

被引量:

16

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(452)

参考文献(0)

引证文献(16)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读