Rationalization of water quality monitoring locations under spatiotemporal heterogeneity of diffuse pollution using seasonal export coefficient.
摘要:
Water quality is continuously changing because of anthropogenic origin of point and diffuses (non-point) pollution sources. Most of the time diffuse sources are not considered for rationalization of sampling sites as their accurate estimation is tedious and data intensive. The estimation of diffuse pollution is conventionally carried out using observed water quality data. These conventional approaches are data intensive and demands detailed information for a considerably long-time horizon and hence becomes challenging to implement in data-scarce regions. Also, diffuse pollution sources are characterized by spatio-temporal heterogeneity as they depend upon seasonal behavior of precipitation. The present study proposes an innovative semi-empirical approach of Seasonal Export Coefficients (SECs) for estimation of diffuse pollution loads, especially for tropical countries like India. This approach takes into account the effect of seasonality on the estimation of diffuse pollution loads, by considering seasonal heterogeneity of terrain and precipitation impact factors and land use applications. This seasonal heterogeneity is then tested for its possible impact on rationalization of water quality monitoring locations for Kali River basin in India. The SECs are estimated for available water quality dataset of 1999-2000 and are further used for simulation of nutrient loading for experimental years 2004-2005, 2009-2010, and 2014-2015. The resulting SECs for Kali river basin are: 2.03 (agricultural), 1.44 (fallow), and 0.92 (settlement) for monsoonal nitrate; while for non-monsoonal nitrate, SECs are 0.51 (agricultural), 0.23 (fallow), and 0.10 (settlement). The monsoonal phosphate SECs for land use classes - agricultural, fallow and settlement are 1.01, 0.68, and 0.25, while non-monsoonal phosphate SECs are 0.27, 0.14 and, 0.03 respectively. The seasonal variation of diffuse pollution sources is effectively captured by SECs. The proposed approach, by considering both point and diffuse pollution, is found efficient in determining optimum locations and number of monitoring sites where seasonal variations are found evident during experimental years.
收起
展开
DOI:
10.1016/j.jenvman.2020.111342
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(139)
参考文献(0)
引证文献(2)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无