SH3PXD2A-AS1/miR-330-5p/UBA2 ceRNA network mediates the progression of colorectal cancer through regulating the activity of the Wnt/β-catenin signaling pathway.
摘要:
Long non-coding RNAs have important roles in the occurrence and progression of various cancers. However, the molecular mechanism of lncRNAs in colorectal cancer (CRC) is not well illustrated. Thus, we used bioinformatics methods to find potential lncRNAs associated with CRC progression, and chose SH3PXD2A-AS1 as a candidate for further analysis. The roles of SH3PXD2A-AS1 in CRC cells were determined by CCK-8, transwell invasion, wound healing and flow cytometry assays. Besides, we established the CRC tumor models in nude mice to study the effect of SH3PXD2A-AS1 on the tumor growth. Based on the ceRNA hypothesis, we used miRDB and miRTarBase websites to identify the SH3PXD2A-AS1-related ceRNA regulatory network, and measured the roles of this network in CRC cells. The results revealed that the expression profiles of SH3PXD2A-AS1 from GEO and TCGA databases showed an aberrant high level in CRC tissues compared with colorectal normal tissues. SH3PXD2A-AS1 over-expression was also found in CRC cells. SH3PXD2A-AS1 knockdown inhibited the CRC cellular proliferation, invasion and migration but induced apoptosis. Besides, SH3PXD2A-AS1 knockdown also suppressed the growth of CRC tumors. Furthermore, SH3PXD2A-AS1 could function as a ceRNA of miR-330-5p. Additionally, UBA2 was proved to be a target gene of miR-330-5p. Moreover, SH3PXD2A-AS1 knockdown downregulated UBA2 expression through sponging miR-330-5p to inactivate the Wnt/β-catenin signaling pathway, thereby inhibiting the cell growth and promoting apoptosis. Therefore, the SH3PXD2A-AS1/miR-330-5p/UBA2 network could regulate the progression of CRC through the Wnt/β-catenin pathway. These findings offer new sights for understanding the pathogenesis of CRC and provide potential biomarkers for CRC treatment.
收起
展开
DOI:
10.1002/tox.23038
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(384)
参考文献(0)
引证文献(10)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无