Quorum Sensing Controls Both Rhamnolipid and Polyhydroxyalkanoate Production in Burkholderia thailandensis Through ScmR Regulation.

来自 PUBMED

作者:

Martinez SHumery AGroleau MCDéziel E

展开

摘要:

Rhamnolipids are surface-active agents of microbial origin used as alternatives to synthetic surfactants. Burkholderia thailandensis is a non-pathogenic rhamnolipid-producing bacterium that could represent an interesting candidate for use in commercial processes. However, current bioprocesses for rhamnolipid production by this bacterium are not efficient enough, mainly due to low yields. Since regulation of rhamnolipid biosynthesis in B. thailandensis remains poorly understood, identifying new regulatory factors could help increase the production of these valuable metabolites. We performed a random transposon mutagenesis screening to identify genes directing rhamnolipid production in B. thailandensis E264. The most efficient rhamnolipid producer we identified harbored an inactivating transposon insertion in the scmR gene, which was recently described to encode as a secondary metabolite regulator in B. thailandensis. We investigated the impact of scmR loss on rhamnolipid biosynthesis and cell growth. Because biosynthesis of rhamnolipids and polyhydroxyalkanoates (PHAs) could share the same pool of lipid precursors, we also investigate the effect of ScmR on PHA production. We found that production of both rhamnolipids and PHAs are modulated by ScmR during the logarithmic growth phase and demonstrate that ScmR downregulates the production of rhamnolipids by affecting the expression of both rhl biosynthetic operons. Furthermore, our results indicate that PHA biosynthesis is reduced in the scmR- mutant, as ScmR promotes the transcription of the phaC and phaZ genes. By studying the relationship between ScmR and quorum sensing (QS) regulation we reveal that QS acts as an activator of scmR transcription. Finally, we pinpoint the QS-3 system as being involved in the regulation of rhamnolipid and PHA biosynthesis. We conclude that ScmR negatively affects rhamnolipid production, whereas it positively impacts PHAs biosynthesis. This could provide an interesting approach for future strain engineering, leading to improved yields of these valuable metabolites.

收起

展开

DOI:

10.3389/fbioe.2020.01033

被引量:

6

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(97)

参考文献(47)

引证文献(6)

来源期刊

Frontiers in Bioengineering and Biotechnology

影响因子:6.058

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读