-
Genetic and nongenetic profiling of milk β-hydroxybutyrate and acetone and their associations with ketosis in Holstein cows.
Ketosis is a metabolic disorder of increasing importance in high-yielding dairy cows, but accurate population-wide binary health trait recording is difficult to implement. Against this background, proper Gaussian indicator traits, which can be routinely measured in milk, are needed. Consequently, we focused on the ketone bodies acetone and β-hydroxybutyrate (BHB), measured via Fourier-transform infrared spectroscopy (FTIR) in milk. In the present study, 62,568 Holstein cows from large-scale German co-operator herds were phenotyped for clinical ketosis (KET) according to a veterinarian diagnosis key. A sub-sample of 16,861 cows additionally had first test-day observations for FTIR acetone and BHB. Associations between FTIR acetone and BHB with KET and with test-day traits were studied phenotypically and quantitative genetically. Furthermore, we estimated SNP marker effects for acetone and BHB (application of genome-wide association studies) based on 40,828 SNP markers from 4,384 genotyped cows, and studied potential candidate genes influencing body fat mobilization. Generalized linear mixed models were applied to infer the influence of binary KET on Gaussian-distributed acetone and BHB (definition of an identity link function), and vice versa, such as the influence of acetone and BHB on KET (definition of a logit link function). Additionally, linear models were applied to study associations between BHB, acetone and test-day traits (milk yield, fat percentage, protein percentage, fat-to-protein ratio and somatic cell score) from the first test-day after calving. An increasing KET incidence was statistically significant associated with increasing FTIR acetone and BHB milk concentrations. Acetone and BHB concentrations were positively associated with fat percentage, fat-to-protein ratio and somatic cell score. Bivariate linear animal models were applied to estimate genetic (co)variance components for KET, acetone, BHB and test-day traits within parities 1 to 3, and considering all parities simultaneously in repeatability models. Pedigree-based heritabilities were quite small (i.e., in the range from 0.01 in parity 3 to 0.07 in parity 1 for acetone, and from 0.03-0.04 for BHB). Heritabilites from repeatability models were 0.05 for acetone, and 0.03 for BHB. Genetic correlations between acetone and BHB were moderate to large within parities and considering all parities simultaneously (0.69-0.98). Genetic correlations between acetone and BHB with KET from different parities ranged from 0.71 to 0.99. Genetic correlations between acetone across parities, and between BHB across parities, ranged from 0.55 to 0.66. Genetic correlations between KET, acetone, and BHB with fat-to-protein ratio and with fat percentage were large and positive, but negative with milk yield. In genome-wide association studies, we identified SNP on BTA 4, 10, 11, and 29 significantly influencing acetone, and on BTA 1 and 16 significantly influencing BHB. The identified potential candidate genes NRXN3, ACOXL, BCL2L11, HIBADH, KCNJ1, and PRG4 are involved in lipid and glucose metabolism pathways.
Klein SL
,Scheper C
,May K
,König S
... -
《-》
-
Genetic parameters of blood β-hydroxybutyrate predicted from milk infrared spectra and clinical ketosis, and their associations with milk production traits in Norwegian Red cows.
The aim of this study was to estimate genetic parameters for blood β-hydroxybutyrate (BHB) predicted from milk spectra and for clinical ketosis (KET), and to examine genetic association of blood BHB with KET and milk production traits (milk, fat, protein, and lactose yields, and milk fat, protein, and lactose contents). Data on milk traits, KET, and milk spectra were obtained from the Norwegian Dairy Herd Recording System with legal permission from TINE SA (Ås, Norway), the Norwegian Dairy Association that manages the central database. Data recorded up to 120 d after calving were considered. Blood BHB was predicted from milk spectra using a calibration model developed based on milk spectra and blood BHB measured in Polish dairy cows. The predicted blood BHB was grouped based on days in milk into 4 groups and each group was considered as a trait. The milk components for test-day milk samples were obtained by Fourier transform mid-infrared spectrometer with previously developed calibration equations from Foss (Hillerød, Denmark). Veterinarian-recorded KET data within 15 d before calving to 120 d after calving were used. Data were analyzed using univariate or bivariate linear animal models. Heritability estimates for predicted blood BHB at different stages of lactation were moderate, ranging from 0.250 to 0.365. Heritability estimate for KET from univariate analysis was 0.078, and the corresponding average estimate from bivariate analysis with BHB or milk production traits was 0.002. Genetic correlations between BHB traits were higher for adjacent lactation intervals and decreased as intervals were further apart. Predicted blood BHB at first test day was moderately genetically correlated with KET (0.469) and milk traits (ranged from -0.367 with protein content to 0.277 with milk yield), except for milk fat content from across lactation stages that had near zero genetic correlation with BHB (0.033). These genetic correlations indicate that a lower BHB is genetically associated with higher milk protein and lactose contents, but with lower yields of milk, fat, protein, and lactose, and with lower frequency of KET. Estimates of genetic correlation of KET with milk production traits were from -0.333 (with protein content) to 0.178 (with milk yield). Blood BHB can routinely be predicted from milk spectra analyzed from test-day milk samples, and thereby provides a practical alternative for selecting cows with lower susceptibility to ketosis, even though the correlations are moderate.
Belay TK
,Svendsen M
,Kowalski ZM
,Ådnøy T
... -
《-》
-
Single-step genomic best linear unbiased predictor genetic parameter estimations and genome-wide associations for milk fatty acid profiles, interval from calving to first insemination, and ketosis in Holstein cattle.
Milk fatty acids (FA) have been suggested as biomarkers for early-lactation metabolic diseases and for female fertility status. The aim of the present study was to infer associations between FA, the metabolic disorder ketosis (KET), and the interval from calving to first insemination (ICF) genetically and genomically. In this regard, we focused on a single-step genomic BLUP approach, allowing consideration of genotyped and ungenotyped cows simultaneously. The phenotypic data set considered 38,375 first-lactation Holstein cows, kept in 45 large-scale co-operator herds from 2 federal states in Germany. The calving years for these cows were from 2014 to 2017. Concentrations in milk from the first official milk recording test-day for saturated, unsaturated (UFA), monounsaturated (MUFA), polyunsaturated, palmitic, and stearic (C18:0) FA were determined via Fourier-transform infrared spectroscopy. Ketosis was defined as a binary trait according to a veterinarian diagnosis key, considering diagnoses within a 6-wk interval after calving. A subset of 9,786 cows was genotyped for 40,989 SNP markers. Variance components and heritabilities for all Gaussian distributed FA and for ICF, and for binary KET were estimated by applying single-step genomic BLUP single-trait linear and threshold models, respectively. Genetic correlations were estimated in series of bivariate runs. Genomic breeding values for the single-step genomic BLUP estimations were dependent traits in single-step GWAS. Heritabilities for FA were moderate in the range from 0.09 to 0.20 (standard error = 0.02-0.03), but quite small for ICF (0.08, standard error = 0.01) and for KET (0.05 on the underlying liability scale, posterior standard deviation = 0.02). Genetic correlations between KET and UFA, MUFA, and C18:0 were large (0.74 to 0.85, posterior standard deviation = 0.14-0.19), and low positive between KET and ICF (0.17, posterior standard deviation = 0.22). Genetic correlations between UFA, MUFA, and C18:0 with ICF ranged from 0.34 to 0.46 (standard error = 0.12). In single-step GWAS, we identified a large proportion of overlapping genomic regions for the different FA, especially for UFA and MUFA, and for saturated and palmitic FA. One identical significantly associated SNP was identified for C18:0 and KET on BTA 15. However, there was no genomic segment simultaneously significantly affecting all trait categories ICF, FA, and KET. Nevertheless, some of the annotated potential candidate genes DGKA, IGFBP4, and CXCL8 play a role in lipid metabolism and fertility mechanisms, and influence production diseases in early lactation. Genetic and genomic associations indicate that Fourier-transform infrared spectroscopy FA concentrations in milk from the first official test-day are valuable predictors for KET and for ICF.
Klein SL
,Yin T
,Swalve HH
,König S
... -
《-》
-
Phenotypic relationships, genetic parameters, genome-wide associations, and identification of potential candidate genes for ketosis and fat-to-protein ratio in German Holstein cows.
Energy demand for milk production in early lactation exceeds energy intake, especially in high-yielding Holstein cows. Energy deficiency causes increasing susceptibility to metabolic disorders. In addition to several blood parameters, the fat-to-protein ratio (FPR) is suggested as an indicator for ketosis, because a FPR >1.5 refers to high lipolysis. The aim of this study was to analyze phenotypic, quantitative genetic, and genomic associations between FPR and ketosis. In this regard, 8,912 first-lactation Holstein cows were phenotyped for ketosis according to a veterinarian diagnosis key. Ketosis was diagnosed if the cow showed an abnormal carbohydrate metabolism with increased content of ketone bodies in the blood or urine. At least one entry for ketosis in the first 6 wk after calving implied a score = 1 (diseased); otherwise, a score = 0 (healthy) was assigned. The FPR from the first test-day was defined as a Gaussian distributed trait (FPRgauss), and also as a binary response trait (FPRbin), considering a threshold of FPR = 1.5. After imputation and quality controls, 45,613 SNP markers from the 8,912 genotyped cows were used for genomic studies. Phenotypically, an increasing ketosis incidence was associated with significantly higher FPR, and vice versa. Hence, from a practical trait recording perspective, first test-day FPR is suggested as an indicator for ketosis. The ketosis heritability was slightly larger when modeling the pedigree-based relationship matrix (pedigree-based: 0.17; SNP-based: 0.11). For FPRbin, heritabilities were larger when modeling the genomic relationship matrix (pedigree-based: 0.09; SNP-based: 0.15). For FPRgauss, heritabilities were almost identical for both pedigree and genomic relationship matrices (pedigree-based: 0.14; SNP-based: 0.15). Genetic correlations between ketosis with FPRbin and FPRgauss using either pedigree- or genomic-based relationship matrices were in a moderate range from 0.39 to 0.71. Applying genome-wide association studies, we identified the specific SNP rs109896020 (BTA 5, position: 115,456,438 bp) significantly contributing to ketosis. The identified potential candidate gene PARVB in close chromosomal distance is associated with nonalcoholic fatty liver disease in humans. The most important SNP contributing to FPRbin was located within the DGAT1 gene. Different SNP significantly contributed to ketosis and FPRbin, indicating different mechanisms for both traits genomically.
Klein SL
,Scheper C
,Brügemann K
,Swalve HH
,König S
... -
《-》
-
Opportunities and limitations of milk mid-infrared spectra-based estimation of acetone and β-hydroxybutyrate for the prediction of metabolic stress and ketosis in dairy cows.
Caldeira MO
,Dan D
,Neuheuser AL
,Stürmlin R
,Weber C
,Glauser DL
,Stierli M
,Schuler U
,Moll J
,Wegmann S
,Bruckmaier RM
,Gross JJ
... -
《-》