-
Systematic Evaluation of the Mechanisms of Mulberry Leaf (Morus alba Linne) Acting on Diabetes Based on Network Pharmacology and Molecular Docking.
Diabetes mellitus is one of the most common endocrine metabolic disorder- related diseases. The application of herbal medicine to control glucose levels and improve insulin action might be a useful approach in the treatment of diabetes. Mulberry leaves (ML) have been reported to exert important activities of anti-diabetic.
In this work, we aimed to explore the multi-targets and multi-pathways regulatory molecular mechanism of Mulberry leaves (ML, Morus alba Linne) acting on diabetes.
Identification of active compounds of Mulberry leaves using Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was carried out. Bioactive components were screened by FAF-Drugs4 website (Free ADME-Tox Filtering Tool). The targets of bioactive components were predicted from SwissTargetPrediction website, and the diabetes related targets were screened from GeneCards database. The common targets of ML and diabetes were used for Gene Ontology (GO) and pathway enrichment analysis. The visualization networks were constructed by Cytoscape 3.7.1 software. The biological networks were constructed to analyze the mechanisms as follows: (1) compound-target network; (2) common target-compound network; (3) common targets protein interaction network; (4) compound-diabetes protein-protein interactions (ppi) network; (5) target-pathway network; and (6) compound-target-pathway network. At last, the prediction results of network pharmacology were verified by molecular docking method.
17 active components were obtained by TCMSP database and FAF-Drugs4 website. 51 potential targets (11 common targets and 40 associated indirect targets) were obtained and used to build the PPI network by the String database. Furthermore, the potential targets were used for GO and pathway enrichment analysis. Eight key active compounds (quercetin, Iristectorigenin A, 4- Prenylresveratrol, Moracin H, Moracin C, Isoramanone, Moracin E and Moracin D) and 8 key targets (AKT1, IGF1R, EIF2AK3, PPARG, AGTR1, PPARA, PTPN1 and PIK3R1) were obtained to play major roles in Mulberry leaf acting on diabetes. And the signal pathways involved in the mechanisms mainly include AMPK signaling pathway, PI3K-Akt signaling pathway, mTOR signaling pathway, insulin signaling pathway and insulin resistance. The molecular docking results show that the 8 key active compounds have good affinity with the key target of AKT1, and the 5 key targets (IGF1R, EIF2AK3, PPARG, PPARA and PTPN1) have better affinity than AKT1 with the key compound of quercetin.
Based on network pharmacology and molecular docking, this study provided an important systematic and visualized basis for further understanding of the synergy mechanism of ML acting on diabetes.
Wu Q
,Hu Y
《-》
-
Study on the Mechanism of Prunella Vulgaris L on Diabetes Mellitus Complicated with Hypertension Based on Network Pharmacology and Molecular Docking Analyses.
Jiao X
,Liu H
,Lu Q
,Wang Y
,Zhao Y
,Liu X
,Liu F
,Zuo Y
,Wang W
,Li Y
... -
《-》
-
Exploring the pharmacological components and effective mechanism of Mori Folium against periodontitis using network pharmacology and molecular docking.
To investigate the main active components, potential targets of action and analyze the potential molecular mechanisms of Mori Folium in preventing and treating periodontitis using network pharmacology and molecular docking methods.
The main components and action targets of Mori Folium were obtained in TCMSP and ETCM databases, and then the action targets of Mori Folium components were inversing screening using Swiss Target Prediction and BATMAN-TCM databases. Targets associated with periodontitis were retrieved from OMIM, Genecard, DrugBank, NCBI Gene and DisGeNET databases. Intersectional targets of Mori Folium and periodontitis were obtained by Venn analysis. Construction of an "active components-targets" network to prevent and treat periodontitis in Mori Folium using Cytoscape 3.8.0. The STRING database was used to construct the protein-protein interaction (PPI) network of intersecting targets, and the core network was screened using CytoNCA and MCODE plug-ins. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were performed using the ClusterProfile package of R software, and then the "Mori Folium active components-targets-signaling pathway" network was constructed using Cytoscape software. Molecular docking was performed using AutoDock Vina software, and Pymol and LigPlus visualized the results.
Sixteen active components and 1048 targets were screened from Mori Folium, of which 164 were intersectional with periodontitis targets and were considered potential therapeutic targets. The "Mori Folium active components-action targets" network identified Quercetin, Moracin D, Moracin E, Moracin G, Moracin H and Moracin B as the main active ingredients of Mori Folium for the prevention and treatment of periodontitis. PPI network analysis revealed interleukin 6 (IL6), albumin (ALB), tumor necrosis factor (TNF), vascular endothelial growth factor A (VEGFA), RAC-alpha serine/threonine-protein kinase (AKT1), cellular tumor antigen p53 (TP53), prostaglandin G/H synthase 2 (PTGS2), pro-epidermal growth factor (EGF), matrix metalloproteinase 9 (MMP9) and interleukin 6 (IL10) as the top 10 core potential targets. GO and KEGG enrichment analyses showed that the action targets of Mori Folium against periodontitis were mainly related to the response to bacterium and their lipopolysaccharide, angiogenesis and reactive oxygen species metabolic process, as well as through signaling pathways that regulate processes related to the accumulation of advanced glycation end products (AGEs), response to oxidative stress, response to inflammatory, and osteoclast differentiation during the development of the disease. Molecular docking revealed that Quercetin, Moracin D, Moracin E, Moracin G, Moracin H and Moracin B were able to bind stably to AKT1, PTGS2 and ESR1 targets, with Moracin E showing the most stable structure after binding to AKT1.
In conclusion, this study revealed the active components, potential targets of action and the potential molecular mechanisms and pharmacological activities involved in the prevention and treatment of periodontitis in Mori Folium, providing a reference for the development of drugs from Mori Folium for the prevention and treatment of periodontitis.
Wu Z
,Ji X
,Shan C
,Song J
,Zhao J
... -
《-》
-
Potential Molecular Mechanisms of Ephedra Herb in the Treatment of Nephrotic Syndrome Based on Network Pharmacology and Molecular Docking.
To explore the possible mechanisms of Ephedra herb (EH) in the treatment of nephrotic syndrome (NS) by using network pharmacology and molecular docking in this study.
Active ingredients and related targets of EH were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and the gene names corresponding to the proteins were found through the UniProt database. Then, target genes related to NS were screened out from GeneCards, PharmGKB, and OMIM databases. Next, the intersection targets were obtained successfully through Venn diagram, which were also seen as key target genes of EH and NS. Cytoscape 3.9.0 software was used to construct the effective "active ingredient-target" network diagram, and "drug-ingredient-target-disease (D-I-T-D)" network diagram. After that, the STRING database was used to construct a protein-protein interaction (PPI) network. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment involved in the targets were performed by the DAVID database and ClueGO plugin in Cytoscape. Finally, AutoDockTools software was used for molecular docking to verify the binding strength between main active ingredients and key target proteins.
A total of 22 main active ingredients such as quercetin, kaempferol, luteolin, and naringenin were obtained, which could act on 105 targets related to NS. Through PPI network, 53 core targets such as AKT1, TNF, IL6, VEGFA, and IL1B were found, which might play a crucial role in the treatment of NS. Meanwhile, these targets were significantly involved in PI3K-Akt signaling pathway, TNF signaling pathway, AGE-RAGE signaling pathway, hepatitis B, and pathways in cancer through GO and KEGG enrichment analysis. The docking results indicated that active ingredients such as kaempferol, luteolin, quercetin, and naringenin all had good binding to the target protein AKT1 or TNF. Among them, luteolin and naringenin binding with AKT1 showed the best binding energy (-6.2 kcal/mol).
This study indicated that the potential mechanism of EH in treating NS may be related to PI3K-Akt signaling pathway, TNF signaling pathway, and AGE-RAGE signaling pathway, which provided better approaches for exploring the mechanism in treating NS and new ideas for further in vivo and in vitro experimental verifications.
Yao T
,Wang Q
,Han S
,Lu Y
,Xu Y
,Wang Y
... -
《-》
-
Research on the Regulatory Mechanism of Ginseng on the Tumor Microenvironment of Colorectal Cancer based on Network Pharmacology and Bioinformatics Validation.
A network pharmacology study on the biological action of ginseng in the treatment of colorectal cancer (CRC) by regulating the tumor microenvironment (TME).
To investigate the potential mechanism of action of ginseng in the treatment of CRC by regulating TME.
This research employed network pharmacology, molecular docking techniques, and bioinformatics validation. Firstly, the active ingredients and the corresponding targets of ginseng were retrieved using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), the Traditional Chinese Medicine Integrated Database (TCMID), and the Traditional Chinese Medicine Database@Taiwan (TCM Database@Taiwan). Secondly, the targets related to CRC were retrieved using Genecards, Therapeutic Target Database (TTD), and Online Mendelian Inheritance in Man (OMIM). Tertiary, the targets related to TME were derived from screening the GeneCards and National Center for Biotechnology Information (NCBI)-Gene. Then the common targets of ginseng, CRC, and TME were obtained by Venn diagram. Afterward, the Protein-protein interaction (PPI) network was constructed in the STRING 11.5 database, intersecting targets identified by PPI analysis were introduced into Cytoscape 3.8.2 software cytoHubba plugin, and the final determination of core targets was based on degree value. The OmicShare Tools platform was used to analyze the Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the core targets. Autodock and PyMOL were used for molecular docking verification and visual data analysis of docking results. Finally, we verified the core targets by Gene Expression Profiling Interactive Analysis (GEPIA) and Human Protein Atlas (HPA) databases in bioinformatics.
A total of 22 active ingredients and 202 targets were identified to be closely related to the TME of CRC. PPI network mapping identified SRC, STAT3, PIK3R1, HSP90AA1, and AKT1 as possible core targets. Go enrichment analysis showed that it was mainly involved in T cell co-stimulation, lymphocyte co-stimulation, growth hormone response, protein input, and other biological processes; KEGG pathway analysis found 123 related signal pathways, including EGFR tyrosine kinase inhibitor resistance, chemokine signaling pathway, VEGF signaling pathway, ErbB signaling pathway, PD-L1 expression and PD-1 checkpoint pathway in cancer, etc. The molecular docking results showed that the main chemical components of ginseng have a stable binding activity to the core targets. The results of the GEPIA database showed that the mRNA levels of PIK3R1 were significantly lowly expressed and HSP90AA1 was significantly highly expressed in CRC tissues. Analysis of the relationship between core target mRNA levels and the pathological stage of CRC showed that the levels of SRC changed significantly with the pathological stage. The HPA database results showed that the expression levels of SRC were increased in CRC tissues, while the expression of STAT3, PIK3R1, HSP90AA1, and AKT1 were decreased in CRC tissues.
Ginseng may act on SRC, STAT3, PIK3R1, HSP90AA1, and AKT1 to regulate T cell costimulation, lymphocyte costimulation, growth hormone response, protein input as a molecular mechanism regulating TME for CRC. It reflects the multi-target and multi-pathway role of ginseng in modulating TME for CRC, which provides new ideas to further reveal its pharmacological basis, mechanism of action and new drug design and development.
Wang T
,Zhang W
,Fang C
,Wang N
,Zhuang Y
,Gao S
... -
《-》