Specific TP53 subtype as biomarker for immune checkpoint inhibitors in lung adenocarcinoma.
摘要:
Although TP53 co-mutation with KRAS/ATM/EGFR/STK11 have been proved to have predictive value for response to immune checkpoint inhibitors (ICIs), not all TP53 mutations are equal in this context. As the main part of TP53 mutant types, Missense and Nonsense alternations in TP53 as independent factors to predict the response to ICIs within Lung Adenocarcinoma (LUAD) patients have not yet been reported. An integrated analysis based on multiple-dimensional data types including genomic, transcriptomic, proteomic and clinical data from published lung adenocarcinoma data and local database of LUAD taking immune checkpoint inhibitors. Gene set enrichment analysis (GSEA) was used to determine potentially relevant gene expression signatures between specific subgroups. Single-sample GSEA (GSVA) is conducted to calculate the score for enrichment of a set of genes regulating DNA damage repair (DDR) pathway. The TP53-missense-mutation group showed increased PD-L1 (CD274) level and enriched IFN-γ signatures compared with the TP53-wild-type subgroup, but no differences were noted in patients with nonsense-mutant vs wild-type p53. Furthermore, a group of suppressor Immune cells like M2 Macrophage and Neutrophils are found enriched in nonsense group. On the other-side, both TP53 missense and nonsense mutations are associated with elevated TMB and neoantigen levels and contribute equally to DNA damage repair deficiency. The distribution regarding to multi-dimensional factors determining the efficacy of ICIs finally transformed into diverse clinical benefits for LUAD. TP53 missense but not -nonsense Mutants are associated with better clinical benefits taking antiPD-1/1L. However, all such TP53 subgroups responds well to nivolumab (antiPD-L1) plus ipilimumab (antiCTLA-4) therapy. Our study demonstrated that not all TP53 mutations are equal in predicting efficacy in patients with LUAD treated with ICIs. Multi-center data showed that TP53 missense and nonsense mutations were significantly different in terms of associations with PD-L1 expression, IFN-γ signatures and TME composition. Special attention should be paid to potential TP53 mutation heterogeneity when evaluating TP53 status as biomarker for ICIs. The study was supported by Key Lab System Project of Guangdong Science and Technology Department - Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer (Grant No. 2017B030314120, to Yi-Long WU).
收起
展开
DOI:
10.1016/j.ebiom.2020.102990
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(470)
参考文献(31)
引证文献(84)
来源期刊
影响因子:11.194
JCR分区: 暂无
中科院分区:暂无