Effects of the depletion of whey proteins from unconcentrated milk using microfiltration on the yield, functionality, and nutritional profile of Cheddar cheese.

来自 PUBMED

作者:

Reale EGovindasamy-Lucey SJohnson MEJaeggi JJMolitor MLu YLucey JA

展开

摘要:

Some European dairies use low concentration factor microfiltration (MF) in their cheese plants. Removal of whey protein (WP) from milk before cheesemaking using microfiltration without concentration provides the opportunity to produce a value-added by-product, milk-derived whey. However, few studies have focused on the effects on cheese properties caused by the depletion of WP from cheese milk. Most studies have concentrated cheese milk using MF in addition to depletion of WP. In our approach, cheese milk was not concentrated during WP depletion using MF. We wanted to quantify residual WP levels in cheese made from MF milk and to explore whether WP depletion from milk would influence functionality, nutritional profile, and cheese quality during ripening. Casein (CN) contents for all milks were kept at ∼2.5%, to eliminate the confounding factor of concentration of CN, which was observed in some previous MF studies. Cheese milks had similar ratios of CN to fat. Three standardized milks were produced with various CN:true protein (TP) ratios: (a) control with a CN:TP ratio of 83:100, (b) 35% WP depletion, 89:100 CN:TP, and (c) 70% WP depletion, 95:100 CN:TP. Cheddar cheeses were made from MF milk with various WP depletion levels and aged for 9 mo, and their functionality was evaluated during ripening. We found no major differences in cheese composition or pH values between samples. Cheese yield, solids recovery, and nitrogen recovery were slightly higher in the 95:100 CN:TP cheeses compared with the control. These enhanced recoveries reflect that MF-treated milk started with a higher fraction of CN-based protein solids, rather than WP solids. The standardized milk from the 95:100 CN:TP treatment also had a slightly higher fat content compared with the control, likely helping to increase cheese yield. Rheological properties of cheeses during heating were similar between treatments. Hardness initially decreased with age for all cheeses due to proteolysis or solubilization, or both, of calcium phosphate. Maximum loss tangent (LT), an index of cheese meltability, was slightly lower for the control cheese until 30 d of ripening, but after 30 d, all treatments exhibited similar maximum LT values. The temperature where LT = 1 (crossover temperature), an index of softening point during heating, was slightly lower for MF cheese compared with the control cheeses during ripening. Microfiltration treatment had no significant influence on proteolysis. Sensory properties were similar between the cheeses, except for bitterness. Bitterness intensity was slightly lower in the MF cheeses than in the control cheeses and increased in all cheeses during ripening. We detected no major differences in the concentrations of key nutrients or vitamins between the various cheeses. Depletion of WP in cheese milk by MF did not negatively affect cheese quality, or its nutritional profile, and resulted in similar cheesemaking yields.

收起

展开

DOI:

10.3168/jds.2020-18713

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(492)

参考文献(0)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读