-
Preimplantation genetic testing for aneuploidies (abnormal number of chromosomes) in in vitro fertilisation.
In in vitro fertilisation (IVF) with or without intracytoplasmic sperm injection (ICSI), selection of the most competent embryo(s) for transfer is based on morphological criteria. However, many women do not achieve a pregnancy even after 'good quality' embryo transfer. One of the presumed causes is that such morphologically normal embryos have an abnormal number of chromosomes (aneuploidies). Preimplantation genetic testing for aneuploidies (PGT-A), formerly known as preimplantation genetic screening (PGS), was therefore developed as an alternative method to select embryos for transfer in IVF. In PGT-A, the polar body or one or a few cells of the embryo are obtained by biopsy and tested. Only polar bodies and embryos that show a normal number of chromosomes are transferred. The first generation of PGT-A, using cleavage-stage biopsy and fluorescence in situ hybridisation (FISH) for the genetic analysis, was demonstrated to be ineffective in improving live birth rates. Since then, new PGT-A methodologies have been developed that perform the biopsy procedure at other stages of development and use different methods for genetic analysis. Whether or not PGT-A improves IVF outcomes and is beneficial to patients has remained controversial.
To evaluate the effectiveness and safety of PGT-A in women undergoing an IVF treatment.
We searched the Cochrane Gynaecology and Fertility (CGF) Group Trials Register, CENTRAL, MEDLINE, Embase, PsycINFO, CINAHL, and two trials registers in September 2019 and checked the references of appropriate papers.
All randomised controlled trials (RCTs) reporting data on clinical outcomes in participants undergoing IVF with PGT-A versus IVF without PGT-A were eligible for inclusion.
Two review authors independently selected studies for inclusion, assessed risk of bias, and extracted study data. The primary outcome was the cumulative live birth rate (cLBR). Secondary outcomes were live birth rate (LBR) after the first embryo transfer, miscarriage rate, ongoing pregnancy rate, clinical pregnancy rate, multiple pregnancy rate, proportion of women reaching an embryo transfer, and mean number of embryos per transfer.
We included 13 trials involving 2794 women. The quality of the evidence ranged from low to moderate. The main limitations were imprecision, inconsistency, and risk of publication bias. IVF with PGT-A versus IVF without PGT-A with the use of genome-wide analyses Polar body biopsy One trial used polar body biopsy with array comparative genomic hybridisation (aCGH). It is uncertain whether the addition of PGT-A by polar body biopsy increases the cLBR compared to IVF without PGT-A (odds ratio (OR) 1.05, 95% confidence interval (CI) 0.66 to 1.66, 1 RCT, N = 396, low-quality evidence). The evidence suggests that for the observed cLBR of 24% in the control group, the chance of live birth following the results of one IVF cycle with PGT-A is between 17% and 34%. It is uncertain whether the LBR after the first embryo transfer improves with PGT-A by polar body biopsy (OR 1.10, 95% CI 0.68 to 1.79, 1 RCT, N = 396, low-quality evidence). PGT-A with polar body biopsy may reduce miscarriage rate (OR 0.45, 95% CI 0.23 to 0.88, 1 RCT, N = 396, low-quality evidence). No data on ongoing pregnancy rate were available. The effect of PGT-A by polar body biopsy on improving clinical pregnancy rate is uncertain (OR 0.77, 95% CI 0.50 to 1.16, 1 RCT, N = 396, low-quality evidence). Blastocyst stage biopsy One trial used blastocyst stage biopsy with next-generation sequencing. It is uncertain whether IVF with the addition of PGT-A by blastocyst stage biopsy increases cLBR compared to IVF without PGT-A, since no data were available. It is uncertain if LBR after the first embryo transfer improves with PGT-A with blastocyst stage biopsy (OR 0.93, 95% CI 0.69 to 1.27, 1 RCT, N = 661, low-quality evidence). It is uncertain whether PGT-A with blastocyst stage biopsy reduces miscarriage rate (OR 0.89, 95% CI 0.52 to 1.54, 1 RCT, N = 661, low-quality evidence). No data on ongoing pregnancy rate or clinical pregnancy rate were available. IVF with PGT-A versus IVF without PGT-A with the use of FISH for the genetic analysis Eleven trials were included in this comparison. It is uncertain whether IVF with addition of PGT-A increases cLBR (OR 0.59, 95% CI 0.35 to 1.01, 1 RCT, N = 408, low-quality evidence). The evidence suggests that for the observed average cLBR of 29% in the control group, the chance of live birth following the results of one IVF cycle with PGT-A is between 12% and 29%. PGT-A performed with FISH probably reduces live births after the first transfer compared to the control group (OR 0.62, 95% CI 0.43 to 0.91, 10 RCTs, N = 1680, I² = 54%, moderate-quality evidence). The evidence suggests that for the observed average LBR per first transfer of 31% in the control group, the chance of live birth after the first embryo transfer with PGT-A is between 16% and 29%. There is probably little or no difference in miscarriage rate between PGT-A and the control group (OR 1.03, 95%, CI 0.75 to 1.41; 10 RCTs, N = 1680, I² = 16%; moderate-quality evidence). The addition of PGT-A may reduce ongoing pregnancy rate (OR 0.68, 95% CI 0.51 to 0.90, 5 RCTs, N = 1121, I² = 60%, low-quality evidence) and probably reduces clinical pregnancies (OR 0.60, 95% CI 0.45 to 0.81, 5 RCTs, N = 1131; I² = 0%, moderate-quality evidence).
There is insufficient good-quality evidence of a difference in cumulative live birth rate, live birth rate after the first embryo transfer, or miscarriage rate between IVF with and IVF without PGT-A as currently performed. No data were available on ongoing pregnancy rates. The effect of PGT-A on clinical pregnancy rate is uncertain. Women need to be aware that it is uncertain whether PGT-A with the use of genome-wide analyses is an effective addition to IVF, especially in view of the invasiveness and costs involved in PGT-A. PGT-A using FISH for the genetic analysis is probably harmful. The currently available evidence is insufficient to support PGT-A in routine clinical practice.
Cornelisse S
,Zagers M
,Kostova E
,Fleischer K
,van Wely M
,Mastenbroek S
... -
《Cochrane Database of Systematic Reviews》
-
Preimplantation genetic screening for abnormal number of chromosomes (aneuploidies) in in vitro fertilisation or intracytoplasmic sperm injection.
Twisk M
,Mastenbroek S
,van Wely M
,Heineman MJ
,Van der Veen F
,Repping S
... -
《Cochrane Database of Systematic Reviews》
-
Number of embryos for transfer following in vitro fertilisation or intra-cytoplasmic sperm injection.
Transfer of more than one embryo during in vitro fertilisation (IVF) or intracytoplasmic sperm injection (ICSI) increases multiple pregnancy rates resulting in an increased risk of maternal and perinatal morbidity. Elective single embryo transfer offers a means of minimising this risk, but this potential gain needs to be balanced against the possibility of jeopardising the overall live birth rate (LBR).
To evaluate the effectiveness and safety of different policies for the number of embryos transferred in infertile couples undergoing assisted reproductive technology cycles.
We searched the Cochrane Gynaecology and Fertility Group specialised register of controlled trials, CENTRAL, MEDLINE, Embase, ClinicalTrials.gov, and the World Health Organization International Clinical Trials Registry Platform from inception to March 2020. We handsearched reference lists of articles and relevant conference proceedings. We also communicated with experts in the field regarding any additional studies.
We included randomised controlled trials (RCTs) comparing different policies for the number of embryos transferred following IVF or ICSI in infertile women. Studies of fresh or frozen and thawed transfer of one to four embryos at cleavage or blastocyst stage were eligible.
Two review authors independently extracted data and assessed trial eligibility and risk of bias. The primary outcomes were LBR and multiple pregnancy rate. The secondary outcomes were clinical pregnancy and miscarriage rates. We analysed data using risk ratios (RR), Peto odds ratio (Peto OR) and a fixed effect model.
We included 17 RCTs in the review (2505 women). The main limitation was inadequate reporting of study methods and moderate to high risk of performance bias due to lack of blinding. A majority of the studies had low numbers of participants. None of the trials compared repeated single embryo transfer (SET) with multiple embryo transfer. Reported results of multiple embryo transfer below refer to double embryo transfer. Repeated single embryo transfer versus multiple embryo transfer in a single cycle Repeated SET was compared with double embryo transfer (DET) in four studies of cleavage-stage transfer. In these studies the SET group received either two cycles of fresh SET (one study) or one cycle of fresh SET followed by one frozen SET (three studies). The cumulative live birth rate after repeated SET may be little or no different from the rate after one cycle of DET (RR 0.95, 95% CI (confidence interval) 0.82 to 1.10; I² = 0%; 4 studies, 985 participants; low-quality evidence). This suggests that for a woman with a 42% chance of live birth following a single cycle of DET, the repeated SET would yield pregnancy rates between 34% and 46%. The multiple pregnancy rate associated with repeated SET is probably reduced compared to a single cycle of DET (Peto OR 0.13, 95% CI 0.08 to 0.21; I² = 0%; 4 studies, 985 participants; moderate-quality evidence). This suggests that for a woman with a 13% risk of multiple pregnancy following a single cycle of DET, the risk following repeated SET would be between 0% and 3%. The clinical pregnancy rate (RR 0.99, 95% CI 0.87 to 1.12; I² = 47%; 3 studies, 943 participants; low-quality evidence) after repeated SET may be little or no different from the rate after one cycle of DET. There may be little or no difference in the miscarriage rate between the two groups. Single versus multiple embryo transfer in a single cycle A single cycle of SET was compared with a single cycle of DET in 13 studies, 11 comparing cleavage-stage transfers and three comparing blastocyst-stage transfers.One study reported both cleavage and blastocyst stage transfers. Low-quality evidence suggests that the live birth rate per woman may be reduced in women who have SET in comparison with those who have DET (RR 0.67, 95% CI 0.59 to 0.75; I² = 0%; 12 studies, 1904 participants; low-quality evidence). Thus, for a woman with a 46% chance of live birth following a single cycle of DET, the chance following a single cycle of SET would be between 27% and 35%. The multiple pregnancy rate per woman is probably lower in those who have SET than those who have DET (Peto OR 0.16, 95% CI 0.12 to 0.22; I² = 0%; 13 studies, 1952 participants; moderate-quality evidence). This suggests that for a woman with a 15% risk of multiple pregnancy following a single cycle of DET, the risk following a single cycle of SET would be between 2% and 4%. Low-quality evidence suggests that the clinical pregnancy rate may be lower in women who have SET than in those who have DET (RR 0.70, 95% CI 0.64 to 0.77; I² = 0%; 10 studies, 1860 participants; low-quality evidence). There may be little or no difference in the miscarriage rate between the two groups.
Although DET achieves higher live birth and clinical pregnancy rates per fresh cycle, the evidence suggests that the difference in effectiveness may be substantially offset when elective SET is followed by a further transfer of a single embryo in fresh or frozen cycle, while simultaneously reducing multiple pregnancies, at least among women with a good prognosis. The quality of evidence was low to moderate primarily due to inadequate reporting of study methods and absence of masking those delivering, as well as receiving the interventions.
Kamath MS
,Mascarenhas M
,Kirubakaran R
,Bhattacharya S
... -
《Cochrane Database of Systematic Reviews》
-
Fresh versus frozen embryo transfers in assisted reproduction.
In vitro fertilisation (IVF) or intracytoplasmic sperm injection (ICSI) treatments conventionally consist of a fresh embryo transfer, possibly followed by one or more cryopreserved embryo transfers in subsequent cycles. An alternative option is to freeze all suitable embryos and transfer cryopreserved embryos in subsequent cycles only, which is known as the 'freeze all' strategy. This is the first update of the Cochrane Review on this comparison.
To evaluate the effectiveness and safety of the freeze all strategy compared to the conventional IVF/ICSI strategy in women undergoing assisted reproductive technology.
We searched the Cochrane Gynaecology and Fertility Group Trials Register, CENTRAL, MEDLINE, Embase, PsycINFO, CINAHL, and two registers of ongoing trials from inception until 23 September 2020 for relevant studies, checked references of publications found, and contacted study authors to obtain additional data.
Two review authors (TZ and MZ) independently selected studies for inclusion, assessed risk of bias, and extracted study data. We included randomised controlled trials comparing a 'freeze all' strategy with a conventional IVF/ICSI strategy including a fresh embryo transfer in women undergoing IVF or ICSI treatment.
The primary outcomes were cumulative live birth rate and ovarian hyperstimulation syndrome (OHSS). Secondary outcomes included effectiveness outcomes (including ongoing pregnancy rate and clinical pregnancy rate), time to pregnancy and obstetric, perinatal and neonatal outcomes.
We included 15 studies in the systematic review and eight studies with a total of 4712 women in the meta-analysis. The overall evidence was of moderate to low quality. We graded all the outcomes and downgraded due to serious risk of bias, serious imprecision and serious unexplained heterogeneity. Risk of bias was associated with unclear blinding of investigators for preliminary outcomes of the study during the interim analysis, unit of analysis error, and absence of adequate study termination rules. There was an absence of high-quality evidence according to GRADE assessments for our primary outcomes, which is reflected in the cautious language below. There is probably little or no difference in cumulative live birth rate between the 'freeze all' strategy and the conventional IVF/ICSI strategy (odds ratio (OR) 1.08, 95% CI 0.95 to 1.22; I2 = 0%; 8 RCTs, 4712 women; moderate-quality evidence). This suggests that for a cumulative live birth rate of 58% following the conventional strategy, the cumulative live birth rate following the 'freeze all' strategy would be between 57% and 63%. Women might develop less OHSS after the 'freeze all' strategy compared to the conventional IVF/ICSI strategy (OR 0.26, 95% CI 0.17 to 0.39; I2 = 0%; 6 RCTs, 4478 women; low-quality evidence). These data suggest that for an OHSS rate of 3% following the conventional strategy, the rate following the 'freeze all' strategy would be 1%. There is probably little or no difference between the two strategies in the cumulative ongoing pregnancy rate (OR 0.95, 95% CI 0.75 to 1.19; I2 = 31%; 4 RCTs, 1245 women; moderate-quality evidence). We could not analyse time to pregnancy; by design, time to pregnancy is shorter in the conventional strategy than in the 'freeze all' strategy when the cumulative live birth rate is comparable, as embryo transfer is delayed in a 'freeze all' strategy. We are uncertain whether the two strategies differ in cumulative miscarriage rate because the evidence is very low quality (Peto OR 1.06, 95% CI 0.72 to 1.55; I2 = 55%; 2 RCTs, 986 women; very low-quality evidence) and cumulative multiple-pregnancy rate (Peto OR 0.88, 95% CI 0.61 to 1.25; I2 = 63%; 2 RCTs, 986 women; very low-quality evidence). The risk of hypertensive disorders of pregnancy (Peto OR 2.15, 95% CI 1.42 to 3.25; I2 = 29%; 3 RCTs, 3940 women; low-quality evidence), having a large-for-gestational-age baby (Peto OR 1.96, 95% CI 1.51 to 2.55; I2 = 0%; 3 RCTs, 3940 women; low-quality evidence) and a higher birth weight of the children born (mean difference (MD) 127 g, 95% CI 77.1 to 177.8; I2 = 0%; 5 RCTs, 1607 singletons; moderate-quality evidence) may be increased following the 'freeze all' strategy. We are uncertain whether the two strategies differ in the risk of having a small-for-gestational-age baby because the evidence is low quality (Peto OR 0.82, 95% CI 0.65 to 1.05; I2 = 64%; 3 RCTs, 3940 women; low-quality evidence).
We found moderate-quality evidence showing that one strategy is probably not superior to the other in terms of cumulative live birth rate and ongoing pregnancy rate. The risk of OHSS may be decreased in the 'freeze all' strategy. Based on the results of the included studies, we could not analyse time to pregnancy. It is likely to be shorter using a conventional IVF/ICSI strategy with fresh embryo transfer in the case of similar cumulative live birth rate, as embryo transfer is delayed in a 'freeze all' strategy. The risk of maternal hypertensive disorders of pregnancy, of having a large-for-gestational-age baby and a higher birth weight of the children born may be increased following the 'freeze all' strategy. We are uncertain if 'freeze all' strategy reduces the risk of miscarriage, multiple pregnancy rate or having a small-for-gestational-age baby compared to conventional IVF/ICSI.
Zaat T
,Zagers M
,Mol F
,Goddijn M
,van Wely M
,Mastenbroek S
... -
《Cochrane Database of Systematic Reviews》
-
Day 5 versus day 3 embryo biopsy for preimplantation genetic testing for monogenic/single gene defects.
Assisted reproductive technology (ART) has allowed couples with a family history of a monogenic genetic disease, or a disease-carrying gene, to reduce the chance of them having a child with the genetic disorder. This is achieved by genetically testing the embryos using an advanced process called preimplantation genetic testing for monogenic or single gene disorders (PGT-M), such as Huntington's disease or cystic fibrosis. This current terminology (PGT-M) has replaced the formerly-known preimplantation genetic diagnosis (PGD). During PGT-M, one or more embryo cells are biopsied and analysed for genetic or chromosomal anomalies before transferring the embryos to the endometrial cavity. Biopsy for PGT-M can be performed at day 3 of cleavage-stage embryo development when the embryo is at the six- to the eight-cell stage, with either one or two blastomeres being removed for analysis. Biopsy for PGT-M can also be performed on day 5 of the blastocyst stage of embryo development when the embryo has 80 to 100 cells, with five to six cells being removed for analysis. Day 5 biopsy has taken over from day 3 biopsy as the most widely-used biopsy technique; however, there is a lack of summarised evidence from randomised controlled trials (RCTs) that assesses the effectiveness and safety of day 5 biopsy compared to day 3 biopsy. Since biopsy is an invasive process, whether it is carried out at day 3 or day 5 of embryo development may have different impacts on further development, implantation, pregnancy, live birth and perinatal outcomes.
To assess the benefits and harms of day 5 embryo biopsy, in comparison to day 3 biopsy, in PGT-M in women undergoing in vitro fertilisation (IVF) or intracytoplasmic sperm injection (ICSI) cycles.
We searched the following electronic bibliographic databases in December 2021 to identify relevant RCTs: the Cochrane Gynaecology and Fertility Group (CGFG) Specialised Trials Register; CENTRAL, MEDLINE, Embase and PsycINFO. We also handsearched grey literature, such as trial registers, relevant journals, reference lists, Google Scholar, and published conference abstracts.
Eligible RCTs compared day 5 versus day 3 embryo biopsy for PGT-M. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures recommended by Cochrane. The primary review outcomes were live births and miscarriages. We calculated outcomes per woman/couple randomised and reported odds ratios (ORs) with 95% confidence intervals (CIs).
We included one RCT involving 20 women. The evidence was of very low certainty; the main limitations of the study were serious risk of bias due to lack of blinding of study personnel, and imprecision. We are uncertain whether day 5 embryo biopsy compared to day 3 biopsy has an effect on live births (OR 1.50, 95% CI 0.26 to 8.82; 1 RCT, 20 women; very low-certainty evidence). The evidence suggests that if the chance of live birth following day 3 biopsy was assumed to be 40%, then the chance with day 5 biopsy is between 15% and 85%. It is also uncertain whether day 5 embryo biopsy compared to day 3 biopsy has an effect on miscarriages (OR 1.00, 95% CI 0.05 to 18.57; 1 RCT, 20 women; very low-certainty evidence). We are uncertain whether day 5 embryo biopsy compared to day 3 biopsy has an effect on other secondary outcome measures, including viable intrauterine pregnancies (OR 2.25, 95% CI 0.38 to 13.47; 1 RCT, 20 women; very low-certainty evidence), ectopic pregnancies (OR 0.16, 95% CI 0.01 to 3.85; 1 RCT, 20 women; very low-certainty evidence), stillbirths (OR not estimable as no events in either group; 1 RCT, 20 women; very low-certainty evidence) or termination of pregnancies (OR 3.32, 95% CI 0.12 to 91.60; 1 RCT, 20 women; very low-certainty evidence). No studies reported on gestational age at birth, birthweight, neonatal mortality and major congenital anomaly.
We are uncertain if there is a difference in live births and miscarriages, viable intrauterine pregnancies, ectopic pregnancies, stillbirths or termination of pregnancies between day 5 and day 3 embryo biopsy for PGT-M. There was insufficient evidence to draw any conclusions regarding other adverse outcomes. The results should be interpreted with caution, as the evidence was of very low certainty due to limited studies, high risk of bias in the included study, and an overall low level of precision.
Vlajkovic T
,Grigore M
,van Eekelen R
,Puscasiu L
... -
《Cochrane Database of Systematic Reviews》