Ruscogenin alleviates LPS-induced pulmonary endothelial cell apoptosis by suppressing TLR4 signaling.
Acute lung injury (ALI) or its most advanced form, acute respiratory distress syndrome (ARDS) is a severe inflammatory pulmonary process triggered by varieties of pathophysiological factors, among which apoptosis of pulmonary endothelial cells plays a critical role in the progression of ALI/ARDS. Ruscogenin (RUS) has been found to exert significant protective effect on ALI induced by lipopolysaccharides (LPS), but there is little information about its role in LPS-induced pulmonary endothelial cell apoptosis. The aim of the present study was to investigate the underlying mechanism in which RUS attenuates LPS-induced pulmonary endothelial cell apoptosis. Mice were challenged with LPS (5 mg/kg) by intratracheal instillation for 24 h to induce apoptosis of pulmonary endothelial cells in model group. RUS (three doses: 0.1, 0.3, and 1 mg/kg) was administrated orally 1 h prior to LPS challenge. The results showed that RUS could attenuate LPS-induced lung injury and pulmonary endothelial apoptosis significantly. And we observed that RUS inhibited the activation of TLR4/MYD88/NF-κB pathway in pulmonary endothelium after LPS treatment. In murine lung vascular endothelial cells (MLECs) we further confirmed that RUS (1 μmol/L) markedly ameliorated MLECs apoptosis by suppressing TLR4 signaling. By using TLR4 knockout mice we found that TLR4 was essential for the RUS-mediated eff ;ect on LPS-stimulated pulmonary endothelial apoptosis. Collectively, our results indicate that RUS plays a protective role against LPS-induced endothelial cell apoptosis via regulating TLR4 signaling, and may be a promising agent in the management of ALI.
Wu Y
,Wang Y
,Gong S
,Tang J
,Zhang J
,Li F
,Yu B
,Zhang Y
,Kou J
... -
《-》
Ruscogenin attenuates sepsis-induced acute lung injury and pulmonary endothelial barrier dysfunction via TLR4/Src/p120-catenin/VE-cadherin signalling pathway.
Sepsis-associated acute lung injury (ALI) occurs with the highest morbidity and carries the highest mortality rates among the pathogenies of ALI. Ruscogenin (RUS) has been found to exhibit anti-inflammation property and rescue lipopolysaccharide-induced ALI, but little is known about its role in sepsis-triggered ALI. The aim of this study was to investigate the potential role of RUS in sepsis-induced ALI and the probable mechanism.
Mice model of cecal ligation and puncture (CLP) was replicated, and three doses of RUS (0.01, 0.03 and 0.1 mg/kg) were administrated 1 h before CLP surgeries.
RUS significantly extended the survival time and attenuated the lung pathological injury, oedema and vascular leakage in sepsis-induced ALI mice. RUS efficiently decreased the level of MPO in lung tissue and the WBC, NEU counts in BALF. In addition, RUS rescued the expression of VE-cadherin and p120-catenin and suppressed the TLR4/Src signalling in lung tissue.
RUS attenuated sepsis-induced ALI via protecting pulmonary endothelial barrier and regulating TLR4/Src/p120-catenin/VE-cadherin signalling pathway.
Wang Y
,Xue L
,Wu Y
,Zhang J
,Dai Y
,Li F
,Kou J
,Zhang Y
... -
《-》
YiQiFuMai lyophilized injection attenuates particulate matter-induced acute lung injury in mice via TLR4-mTOR-autophagy pathway.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the serious diseases that are characterized by a severe inflammatory response of lung injuries and damage to the microvascular permeability, frequently resulting in death. YiQiFuMai (YQFM) lyophilized injection powder is a redeveloped preparation based on the well-known traditional Chinese medicine formula Sheng-Mai-San which is widely used in clinical practice in China, mainly for the treatment of microcirculatory disturbance-related diseases. However, there is little information about its role in ALI/ARDS. The aim of this study was to determine the protective effect of YQFM on particulate matter (PM)-induced ALI. The mice were intratracheally instilled with 50 mg/kg body weight of Standard Reference Material1648a (SRM1648a) in the PM-induced group. The mice in the YQFM group were given YQFM (three doses: 0.33, 0.67, and 1.34 g/kg) by tail vein injection 30 min after the intratracheal instillation of PM. The results showed that YQFM markedly reduced lung pathological injury and the lung wet/dry weight ratios induced by PM. Furthermore, we also found that YQFM significantly inhibited the PM-induced myeloperoxidase (MPO) activity in lung tissues, decreased the PM-induced inflammatory cytokines including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), reduced nitric oxide (NO) and total protein in bronchoalveolar lavage fluids (BALF), and effectively attenuated PM-induced increases lymphocytes in BALF. In addition, YQFM increased mammalian target of rapamycin (mTOR) phosphorylation and dramatically suppressed the PM-stimulated expression of toll-like receptor 4 (TLR4), MyD88, autophagy-related protein LC3Ⅱand Beclin 1 as well as autophagy. In conclusion, these findings indicate that YQFM had a critical anti-inflammatory effect due to its ability to regulate both TLR4-MyD88 and mTOR-autophagy pathways, and might be a possible therapeutic agent for PM-induced ALI.
Xia Y
,S D
,Jiang S
,Fan R
,Wang Y
,Wang Y
,Tang J
,Zhang Y
,He RL
,Yu B
,Kou J
... -
《-》
Essential oil from Cinnamomum cassia Presl bark regulates macrophage polarization and ameliorates lipopolysaccharide-induced acute lung injury through TLR4/MyD88/NF-κB pathway.
Cinnamomum cassia Presl, a traditional Chinese medicine recorded in "Shennong's Herbal Classic," has been historically used to treat respiratory diseases and is employed to address inflammation. The essential oil derived from Cinnamomum cassia bark is a primary anti-inflammatory agent. However, there remains ambiguity regarding the chemical composition of cinnamon bark essential oil (BCEO), its principal anti-inflammatory components, and their potential efficacy in typical inflammatory respiratory conditions, such as acute lung injury (ALI).
This study aimed to unveil the chemical composition of BCEO. In addition, the mechanism of action of BCEO in ameliorating ALI and regulating macrophage polarization through the TLR4/MyD88/NF-κB pathway was elucidated.
BCEO was extracted using supercritical fluid extraction (SFE) and characterized through gas chromatography-mass spectrometry (GC-MS) analysis. Acute oral toxicity was observed in C57BL/6 J mice. The pharmacological effects and underlying mechanisms of BCEO were evaluated in a mouse model of ALI, which was induced by administering 5 mg/kg of lipopolysaccharide (LPS) through intratracheal instillation.
GC-MS analysis revealed 99.08% of the constituents of BCEO. The primary components of BCEO were trans-cinnamaldehyde, o-methoxycinnamaldehyde, (+)-α-muurolene, δ-cadinene, and copaene. Oral acute toxicity tests indicated that the maximum tolerated dose of BCEO was 12 g/kg/day. BCEO treatment significantly reduced lung W/D ratio, total protein concentration in BALF, levels of TNF-α, IL-6, and IL-1β in BALF, WBC count and NEU% in peripheral blood, and lung histological damage. Pulmonary function, IL-10 levels, and LYM% in peripheral blood also showed improvement. BCEO effectively decreased the proportion of M1 phenotype macrophages in BALF, M1/M2 ratio, and apoptotic cells in the lung tissue while increasing the proportion of M2 phenotype macrophages in BALF. Furthermore, BCEO treatment led to reduced protein and mRNA levels of TLR4, MyD88, and p-p65, alongside increased p65 expression, suggesting its potential to impede the TLR4/MyD88/NF-κB signaling pathway.
SFE-extracted BCEO or its major constituents could serve as a viable treatment for ALI by reducing lung inflammation, improving pulmonary function, and protecting against LPS-induced ALI in mice. This therapeutic effect is achieved by inhibiting M1 macrophage polarization, promoting M2 macrophage polarization, and suppressing the TLR4/MyD88/NF-κB signaling pathway.
Liu F
,Yang Y
,Dong H
,Zhu Y
,Feng W
,Wu H
... -
《-》