Tracking the motion of the K(V)1.2 voltage sensor reveals the molecular perturbations caused by a de novo mutation in a case of epilepsy.

来自 PUBMED

摘要:

KV1.2 channels, encoded by the KCNA2 gene, regulate neuronal excitability by conducting K+ upon depolarization. A new KCNA2 missense variant was discovered in a patient with epilepsy, causing amino acid substitution F302L at helix S4, in the KV1.2 voltage-sensing domain. Immunocytochemistry and flow cytometry showed that F302L does not impair KCNA2 subunit surface trafficking. Molecular dynamics simulations indicated that F302L alters the exposure of S4 residues to membrane lipids. Voltage clamp fluorometry revealed that the voltage-sensing domain of KV1.2-F302L channels is more sensitive to depolarization. Accordingly, KV1.2-F302L channels opened faster and at more negative potentials; however, they also exhibited enhanced inactivation: that is, F302L causes both gain- and loss-of-function effects. Coexpression of KCNA2-WT and -F302L did not fully rescue these effects. The proband's symptoms are more characteristic of patients with loss of KCNA2 function. Enhanced KV1.2 inactivation could lead to increased synaptic release in excitatory neurons, steering neuronal circuits towards epilepsy. An exome-based diagnostic panel in an infant with epilepsy revealed a previously unreported de novo missense variant in KCNA2, which encodes voltage-gated K+ channel KV1.2. This variant causes substitution F302L, in helix S4 of the KV1.2 voltage-sensing domain (VSD). F302L does not affect KCNA2 subunit membrane trafficking. However, it does alter channel functional properties, accelerating channel opening at more hyperpolarized membrane potentials, indicating gain of function. F302L also caused loss of KV1.2 function via accelerated inactivation onset, decelerated recovery and shifted inactivation voltage dependence to more negative potentials. These effects, which are not fully rescued by coexpression of wild-type and mutant KCNA2 subunits, probably result from the enhancement of VSD function, as demonstrated by optically tracking VSD depolarization-evoked conformational rearrangements. In turn, molecular dynamics simulations suggest altered VSD exposure to membrane lipids. Compared to other encephalopathy patients with KCNA2 mutations, the proband exhibits mild neurological impairment, more characteristic of patients with KCNA2 loss of function. Based on this information, we propose a mechanism of epileptogenesis based on enhanced KV1.2 inactivation leading to increased synaptic release preferentially in excitatory neurons, and hence the perturbation of the excitatory/inhibitory balance of neuronal circuits.

收起

展开

DOI:

10.1113/JP280438

被引量:

8

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(121)

参考文献(90)

引证文献(8)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读