A novel role of FKN/CX3CR1 in promoting osteogenic transformation of VSMCs and atherosclerotic calcification.

来自 PUBMED

作者:

Yang TGuo LChen LLi JLi QPi YZhu JZhang L

展开

摘要:

Fractalkine (FKN) and its specific receptor CX3CR1 play a critical role in the pathogenesis of atherosclerosis including recruitment of vascular cells and the development of inflammation. However, its contribution to regulating the development of atherosclerotic calcification has not been well documented. Osteogenic transformation of vascular smooth muscle cells (VSMCs) is critical in the development of calcification in atherosclerotic lesions. In this study, for the first time, we evaluated the effect of FKN/CX3CR1 on the progression of VSMCs calcification and defined molecular signaling that is operative in the FKN/CX3CR1-induced osteogenic transformation of VSMCs. We found that high-fat diet induced atherosclerotic calcification in vivo was markedly inhibited in the Apolipoprotein E (ApoE) and CX3CR1 deficient (ApoE-/-/CX3CR1-/-) mice compared with their control littermates. FKN and CX3CR1 were both expressed in VSMCs and up-regulated by oxidized low-density lipoprotein (ox-LDL). FKN/CX3CR1 promoted the expression of osteogenic markers, including osteopontin (OPN), bone morphogenetic protein (BMP)-2 and alkaline phosphatase (ALP) and decreased VSMCs markers, including smooth muscle (SM) α-actin and SM22-α in a dose-dependent manner. The essential role of FKN/CX3CR1 in VSMCs calcification was further confirmed by lentivirus-mediated knockdown or overexpression of CX3CR1 blocked or accelerated osteogenic transformation of VSMCs. This response was associated with reciprocal up- and down-regulation of osteogenic factor, runt-related transcription factor 2 (RUNX2), transcription factors in osteoclast differentiation, receptor activator of nuclear factor-κB (RANK), RANK ligand (RNAKL) and osteoprotegerin (OPG), respectively. Inhibition of FKN/CX3CR1-activated Jak2/Stat3 signaling by the Jak/Stat inhibitor AG490 blocked osteogenic transformation of VSMCs and RUNX2 induction concurrently. Taken together, our data uncovered novel roles of FKN/CX3CR1 in promoting VSMC osteogenic transformation and atherosclerotic calcification by activating RUNX2 through Jak2/Stat3 signaling pathway and suppressing OPG. Our findings suggest that targeting FKN/CX3CR1 may provide new strategies for the prevention and treatment of atherosclerotic calcification.

收起

展开

DOI:

10.1016/j.ceca.2020.102265

被引量:

8

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(437)

参考文献(0)

引证文献(8)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读