-
In Colorectal Cancer Cells With Mutant KRAS, SLC25A22-Mediated Glutaminolysis Reduces DNA Demethylation to Increase WNT Signaling, Stemness, and Drug Resistance.
Mutant KRAS promotes glutaminolysis, a process that uses steps from the tricarboxylic cycle to convert glutamine to α-ketoglutarate and other molecules via glutaminase and SLC25A22. This results in inhibition of demethylases and epigenetic alterations in cells that increase proliferation and stem cell features. We investigated whether mutant KRAS-mediated glutaminolysis affects the epigenomes and activities of colorectal cancer (CRC) cells.
We created ApcminKrasG12D mice with intestine-specific knockout of SLC25A22 (ApcminKrasG12DSLC25A22fl/fl mice). Intestine tissues were collected and analyzed by histology, immunohistochemistry, and DNA methylation assays; organoids were derived and studied for stem cell features, along with organoids derived from 2 human colorectal tumor specimens. Colon epithelial cells (1CT) and CRC cells (DLD1, DKS8, HKE3, and HCT116) that expressed mutant KRAS, with or without knockdown of SLC25A22 or other proteins, were deprived of glutamine or glucose and assayed for proliferation, colony formation, glucose or glutamine consumption, and apoptosis; gene expression patterns were analyzed by RNA sequencing, proteins by immunoblots, and metabolites by liquid chromatography-mass spectrometry, with [U-13C5]-glutamine as a tracer. Cells and organoids with knocked down, knocked out, or overexpressed proteins were analyzed for DNA methylation at CpG sites using arrays. We performed immunohistochemical analyses of colorectal tumor samples from 130 patients in Hong Kong (57 with KRAS mutations) and Kaplan-Meier analyses of survival. We analyzed gene expression levels of colorectal tumor samples in The Cancer Genome Atlas.
CRC cells that express activated KRAS required glutamine for survival, and rapidly incorporated it into the tricarboxylic cycle (glutaminolysis); this process required SLC25A22. Cells incubated with succinate and non-essential amino acids could proliferate under glutamine-free conditions. Mutant KRAS cells maintained a low ratio of α-ketoglutarate to succinate, resulting in reduced 5-hydroxymethylcytosine-a marker of DNA demethylation, and hypermethylation at CpG sites. Many of the hypermethylated genes were in the WNT signaling pathway and at the protocadherin gene cluster on chromosome 5q31. CRC cells without mutant KRAS, or with mutant KRAS and knockout of SLC25A22, expressed protocadherin genes (PCDHAC2, PCDHB7, PCDHB15, PCDHGA1, and PCDHGA6)-DNA was not methylated at these loci. Expression of the protocadherin genes reduced WNT signaling to β-catenin and expression of the stem cell marker LGR5. ApcminKrasG12DSLC25A22fl/fl mice developed fewer colon tumors than ApcminKrasG12D mice (P < .01). Organoids from ApcminKrasG12DSLC25A22fl/fl mice had reduced expression of LGR5 and other markers of stemness compared with organoids derived from ApcminKrasG12D mice. Knockdown of SLC25A22 in human colorectal tumor organoids reduced clonogenicity. Knockdown of lysine demethylases, or succinate supplementation, restored expression of LGR5 to SLC25A22-knockout CRC cells. Knockout of SLC25A22 in CRC cells that express mutant KRAS increased their sensitivity to 5-fluorouacil. Level of SLC25A22 correlated with levels of LGR5, nuclear β-catenin, and a stem cell-associated gene expression pattern in human colorectal tumors with mutations in KRAS and reduced survival times of patients.
In CRC cells that express activated KRAS, SLC25A22 promotes accumulation of succinate, resulting in increased DNA methylation, activation of WNT signaling to β-catenin, increased expression of LGR5, proliferation, stem cell features, and resistance to 5-fluorouacil. Strategies to disrupt this pathway might be developed for treatment of CRC.
Wong CC
,Xu J
,Bian X
,Wu JL
,Kang W
,Qian Y
,Li W
,Chen H
,Gou H
,Liu D
,Yat Luk ST
,Zhou Q
,Ji F
,Chan LS
,Shirasawa S
,Sung JJ
,Yu J
... -
《-》
-
SLC25A22 Promotes Proliferation and Survival of Colorectal Cancer Cells With KRAS Mutations and Xenograft Tumor Progression in Mice via Intracellular Synthesis of Aspartate.
Many colorectal cancer (CRC) cells contain mutations in KRAS. Analyses of CRC cells with mutations in APC or CTNNB1 and KRAS identified SLC25A22, which encodes mitochondrial glutamate transporter, as a synthetic lethal gene. We investigated the functions of SLC25A22 in CRC cells with mutations in KRAS.
We measured levels of SLC25A22 messenger RNA and protein in paired tumor and nontumor colon tissues collected from 130 patients in Hong Kong and 17 patients in China and compared protein levels with patient survival times. Expression of SLC25A22 was knocked down in KRAS mutant CRC cell lines (DLD1, HCT116, LOVO, SW480, SW620, and SW1116) and CRC cell lines without mutations in KRAS (CACO-2, COLO205, HT29, and SW48); cells were analyzed for colony formation, proliferation, glutaminolysis and aspartate synthesis, and apoptosis in Matrigel and polymerase chain reaction array analyses. DLD1 and HCT116 cells with SLC25A22 knockdown were grown as xenograft tumors in nude mice; tumor growth and metastasis were measured. SLC25A22 was expressed ectopically in HCT116 cells, which were analyzed in vitro and grown as xenograft tumors in nude mice.
Levels of SLC25A22 messenger RNA and protein were increased in colorectal tumor tissues compared with matched nontumor colon tissues; increased protein levels were associated with shorter survival times of patients (P = .01). Knockdown of SLC25A22 in KRAS mutant CRC cells reduced their proliferation, migration, and invasion in vitro, and tumor formation and metastasis in mice, compared with cells without SLC25A22 knockdown. Knockdown of SLC25A22 reduced aspartate biosynthesis, leading to apoptosis, decreased cell proliferation in KRAS mutant CRC cells. Incubation of KRAS mutant CRC cells with knockdown of SLC25A22 with aspartate increased proliferation and reduced apoptosis, which required GOT1, indicating that oxaloacetate is required for cell survival. Decreased levels of oxaloacetate in cells with knockdown of SLC25A22 reduced regeneration of oxidized nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate. Reduced oxidized nicotinamide adenine dinucleotide inhibited glycolysis and decreased levels of adenosine triphosphate, which inactivated mitogen-activated protein kinase kinase and extracellular signal-regulated kinase signaling via activation of AMP-activated protein kinase. An increased ratio of oxidized nicotinamide adenine dinucleotide phosphate to reduced nicotinamide adenine dinucleotide phosphate induced oxidative stress and glutathione oxidation, which suppressed cell proliferation. Asparagine synthetase mediated synthesis of asparagine from aspartate to promote cell migration.
SLC25A22 promotes proliferation and migration of CRC cells with mutations KRAS, and formation and metastasis of CRC xenograft tumors in mice. Patients with colorectal tumors that express increased levels of SLC25A22 have shorter survival times than patients whose tumors have lower levels. SLC25A22 induces intracellular synthesis of aspartate, activation of mitogen-activated protein kinase kinase and extracellular signal-regulated kinase signaling and reduces oxidative stress.
Wong CC
,Qian Y
,Li X
,Xu J
,Kang W
,Tong JH
,To KF
,Jin Y
,Li W
,Chen H
,Go MY
,Wu JL
,Cheng KW
,Ng SS
,Sung JJ
,Cai Z
,Yu J
... -
《-》
-
TRIB3 Interacts With β-Catenin and TCF4 to Increase Stem Cell Features of Colorectal Cancer Stem Cells and Tumorigenesis.
Activation of Wnt signaling to β-catenin contributes to the development of colorectal cancer (CRC). Expression of tribbles pseudo-kinase 3 (TRIB3) is increased in some colorectal tumors and associated with poor outcome. We investigated whether increased TRIB3 expression promotes stem cell features of CRC cells and tumor progression by interacting with the Wnt signaling pathway.
We performed studies with C57BL/6J-ApcMin/J mice injected with an adeno-associated virus vector that expresses a small hairpin RNA against Trib3 mRNA (ApcMin/J-Trib3KD) or a control vector (ApcMin/J-Ctrl). We created BALB/c mice that overexpress TRIB3 from an adeno-associated virus vector and mice with small hairpin RNA-mediated knockdown of β-catenin. The mice were given azoxymethane followed by dextran sodium sulfate to induce colitis-associated cancer. Intestinal tissues were collected and analyzed by histology, gene expression profiling, immunohistochemistry, and immunofluorescence. Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5)-positive (LGR5Pos) and LGR5-negative (LGR5Neg) HCT-8 CRC cells, with or without knockdown or transgenic expression of TRIB3, were sorted and analyzed in sphere-formation assays. We derived organoids from human and mouse colorectal tumors to analyze the function of TRIB3 and test the effect of a peptide inhibitor. Wnt signaling to β-catenin was analyzed in dual luciferase reporter, chromatin precipitation, immunofluorescence, and immunoblot assays. Proteins that interact with TRIB3 were identified by immunoprecipitation. CRC cell lines were grown in nude mice as xenograft tumors.
At 10 weeks of age, more than half the ApcMin/J-Ctrl mice developed intestinal high-grade epithelial neoplasia, whereas ApcMin/J-Trib3KD mice had no intestinal polyps and normal histology. Colon tissues from ApcMin/J-Trib3KD mice expressed lower levels of genes regulated by β-catenin and genes associated with cancer stem cells. Mice with overexpression of Trib3 developed more tumors after administration of azoxymethane and dextran sodium sulfate than BALB/c mice. Mice with knockdown of β-catenin had a lower tumor burden after administration of azoxymethane and dextran sodium sulfate, regardless of Trib3 overexpression. Intestinal tissues from mice with overexpression of Trib3 and knockdown of β-catenin did not have activation of Wnt signaling or expression of genes regulated by β-catenin. LGR5Pos cells sorted from HCT-8 cells expressed higher levels of TRIB3 than LGR5Neg cells. CRC cells that overexpressed TRIB3 had higher levels of transcription by β-catenin and formed larger spheroids than control CRC cells; knockdown of β-catenin prevented the larger organoid size caused by TRIB3 overexpression. TRIB3 interacted physically with β-catenin and transcription factor 4 (TCF4). TRIB3 overexpression increased, and TRIB3 knockdown decreased, recruitment of TCF4 and β-catenin to the promoter region of genes regulated by Wnt. Activated β-catenin increased expression of TRIB3, indicating a positive-feedback loop. A peptide (P2-T3A6) that bound β-catenin disrupted its interaction with TRIB3 and TCF4. In primary CRC cells and HCT-8 cells, P2-T3A6 decreased expression of genes regulated by β-catenin and genes associated with cancer stem cells and decreased cell viability and migration. Injection of C57BL/6J-ApcMin/J mice with P2-T3A6 decreased the number and size of tumor nodules and colon expression of genes regulated by β-catenin. P2-T3A6 increased 5-fluorouracil-induced death of CRC cells and survival times of mice with xenograft tumors.
TRIB3 interacts with β-catenin and TCF4 in intestine cells to increase expression of genes associated with cancer stem cells. Knockdown of TRIB3 decreases colon neoplasia in mice, migration of CRC cells, and their growth as xenograft tumors in mice. Strategies to block TRIB3 activity might be developed for treatment of CRC.
Hua F
,Shang S
,Yang YW
,Zhang HZ
,Xu TL
,Yu JJ
,Zhou DD
,Cui B
,Li K
,Lv XX
,Zhang XW
,Liu SS
,Yu JM
,Wang F
,Zhang C
,Huang B
,Hu ZW
... -
《-》
-
Histone Demethylase JMJD2D Interacts With β-Catenin to Induce Transcription and Activate Colorectal Cancer Cell Proliferation and Tumor Growth in Mice.
Wnt signaling contributes to the development of colorectal cancer (CRC). We studied interactions between lysine demethylase 4D (KDM4D or JMJD2D) and β-catenin, a mediator of Wnt signaling, in CRC cell lines and the effects on tumor formation in mice.
We obtained colorectal tumor specimens and surrounding nontumor colon tissues (controls) from patients undergoing surgery in China; levels of JMJD2D were measured by immunohistochemical or immunoblot analysis. JMJD2D expression was knocked down in CRC (CT26, HCT116, and SW480 cells) using small hairpin RNAs, and cells were analyzed with viability, flow cytometry, colony formation, and transwell migration and invasion assays. Cells were also grown as tumor xenografts in nude mice or injected into tail veins or spleens of mice, and metastases were measured. We performed promoter activity, co-immunoprecipitation, and chromatin immunoprecipitation assays. We also performed studies with Apcmin/+ and JMJD2D-knockout mice; these mice were crossed, and colorectal tumor formation in offspring (Apcmin/+Jmjd2d+/+ and Apcmin/+Jmjd2d-/-) was analyzed. JMJD2D-knockout and wild-type (control) mice were given azoxymethane followed by dextran sodium sulfate to induce colitis-associated CRC; some mice were given the JMJD2D inhibitor 5-chloro-8-hydroxyquinoline (5-c-8HQ) or vehicle to examine the effects of 5-c-8HQ on intestinal tumor formation.
Levels of JMJD2D were significantly higher in human colorectal tumors than in control tissues and correlated with levels of proliferating cell nuclear antigen. JMJD2D knockdown reduced CRC cell proliferation, migration, and invasion, as well as growth of xenograft tumors and formation of metastases in mice. JMJD2D was required for expression of β-catenin in CRC cell lines; ectopic expression of JMJD2D increased the promoter activities of genes regulated by β-catenin (MYC, CCND1, MMP2, and MMP9). We found that JMJD2D and β-catenin interacted physically and that JMJD2D demethylated H3K9me3 at promoters of β-catenin target genes. JMJD2D-knockout mice developed fewer colitis-associated colorectal tumors than control mice, and their tumor tissues had lower levels of β-catenin, MYC, cyclin D1, and proliferating cell nuclear antigen than tumors from control mice. Apcmin/+Jmjd2d-/- mice developed fewer and smaller colon tumors than Apcmin/+ mice. Mice given 5-c-8HQ developed smaller and fewer colitis-associated tumors, with lower levels of cell proliferation, than mice given vehicle. Apcmin/+ mice given 5-c-8HQ also developed fewer tumors in intestines and colons than mice given vehicle.
Levels of the histone demethylase JMJD2D are increased in human colorectal tumors compared with nontumor colon tissues. JMJD2D interacts with β-catenin to activate transcription of its target genes and promote CRC cell proliferation, migration, and invasion, as well as formation of colorectal tumors in mice.
Peng K
,Kou L
,Yu L
,Bai C
,Li M
,Mo P
,Li W
,Yu C
... -
《-》
-
OVOL2, an Inhibitor of WNT Signaling, Reduces Invasive Activities of Human and Mouse Cancer Cells and Is Down-regulated in Human Colorectal Tumors.
Activation of WNT signaling promotes the invasive activities of several types of cancer cells, but it is not clear if it regulates the same processes in colorectal cancer (CRC) cells, or what mechanisms are involved. We studied the expression and function of OVOL2, a member of the Ovo family of conserved zinc-finger transcription factors regulated by the WNT signaling pathway, in intestinal tumors of mice and human beings.
We analyzed the expression of OVOL2 protein and messenger RNA in CRC cell lines and tissue arrays, as well as CRC samples from patients who underwent surgery at Xiamen University in China from 2009 to 2012; clinical information also was collected. CRC cell lines (SW620) were infected with lentivirus expressing OVOL2, analyzed in migration and invasion assays, and injected into nude mice to assess tumor growth and metastasis. Tandem affinity purification was used to purify the OVOL2-containing complex from CRC cells; the complex was analyzed by liquid chromatography, tandem mass spectrometry, and immunoprecipitation experiments. Gene promoter activities were measured in luciferase reporter assays. We analyzed mice with an intestine-specific disruption of Ovol2 (Ovol2(flox/+) transgenic mice), as well as Apc(min/+) mice; these mice were crossed and analyzed.
Analysis of data from patients indicated that the levels of OVOL2 messenger RNA were significantly lower in colon carcinomas than adenomas, and decreased significantly as carcinomas progressed from grades 2 to 4. Immunohistochemical analysis of a tissue array of 275 CRC samples showed a negative association between tumor stage and OVOL2 level. Overexpression of OVOL2 in SW620 cells decreased their migration and invasion, reduced markers of the epithelial-to-mesenchymal transition, and suppressed their metastasis as xenograft tumors in nude mice; knockdown of OVOL2 caused LS174T cells to transition from epithelial to mesenchymal phenotypes. OVOL2 bound T-cell factor (TCF)4 and β-catenin, facilitating recruitment of histone deacetylase 1 to the TCF4-β-catenin complex; this inhibited expression of epithelial-to-mesenchymal transition-related genes regulated by WNT, such as SLUG, in CRC cell lines. OVOL2 was a downstream target of WNT signaling in LS174T and SW480 cells. The OVOL2 promoter was hypermethylated in late-stage CRC specimens from patients and in SW620 cells; hypermethylation resulted in OVOL2 down-regulation and an inability to inhibit WNT signaling. Disruption of Ovol2 in Apc(min/+) mice increased WNT activity in intestinal tissues and the formation of invasive intestinal tumors.
OVOL2 is a colorectal tumor suppressor that blocks WNT signaling by facilitating the recruitment of histone deacetylase 1 to the TCF4-β-catenin complex. Strategies to increase levels of OVOL2 might be developed to reduce colorectal tumor progression and metastasis.
Ye GD
,Sun GB
,Jiao P
,Chen C
,Liu QF
,Huang XL
,Zhang R
,Cai WY
,Li SN
,Wu JF
,Liu YJ
,Wu RS
,Xie YY
,Chan EC
,Liou YC
,Li BA
... -
《-》