Elevated air temperature damage to photosynthetic apparatus alleviated by enhanced cyclic electron flow around photosystem I in tobacco leaves.
High temperature can lead to increased production of excess light energy, thus reducing photosynthetic capacity in plants. Photosynthetic cyclic electron flow (CEF) in photosystem I (PSI) can effectively protect photosystems, but its physiological mechanism under high temperature is poorly understood. In this study, antimycin A (AA) and thenoyltrifluoroacetone (TTFA) were used to inhibit PGR5-and NDH-dependent CEF pathways, respectively, to reveal the photoprotective functions of CEF for PSII in tobacco leaves under high temperature stress (37 °C, HT). High temperatures caused decreases in maximal photochemistry efficiency (Fv/Fm) and damaged photosystem II (PSII) in tobacco leaves. Under AA inhibition of PGR5-dependent CEF, high temperature increased the fluorescence intensity of point O (Fo) in OJIP curves, i.e., the energy absorption per active reaction center (ABS/RC), the trapping rate of the reaction center (TRo/RC), and the electron transport efficiency per reaction center (ETo/RC) in tobacco leaves. High temperature induced an increase in the hydrogen peroxide content and a decrease in pigment content in tobacco leaves. Under the high temperature treatment, inhibition of PGR5-dependent CEF reduced the activities of the PSII reaction center significantly, destroyed the oxygen-evolving complex (OEC), and impeded photosynthetic electron transfer from PSII to the plastoquinone (PQ) pool in tobacco leaves. The TTFA treatment inhibited the NDH-dependent pathway under high temperature conditions, with the relative fluorescence intensity of point I (VI) decreased significantly, and the content of hydrogen peroxide and superoxide anion increased significantly. Additionally, Fo and the redox degree of the PSII donor side (Wk) increased, and pigment content decreased compared to the control, but with little change compared to high temperature treatment, indicating that the inhibition of the NDH-dependent pathway directly weakened the capacity of the PQ pool to lead to the accumulation of reactive oxygen species (ROS) in tobacco leaves. In conclusion, CEF alleviated damage to the photosynthetic apparatus in tobacco leaves by increasing PSII heat dissipation, reducing ROS production, and maintaining the stability of the PQ pool to accommodate photosynthetic electron flow.
Yanhui C
,Hongrui W
,Beining Z
,Shixing G
,Zihan W
,Yue W
,Huihui Z
,Guangyu S
... -
《-》
Toxic effects of heavy metal Cd and Zn on chlorophyll, carotenoid metabolism and photosynthetic function in tobacco leaves revealed by physiological and proteomics analysis.
To explore the mechanisms underlying the action of the heavy metals Cd and Zn on the photosynthetic function of plant leaves, the effects of 100 μmol L-1 Cd and 200 μmol L-1 Zn stress (the exposure concentrations of Cd and Zn in the culture medium were 2.24 mg kg-1 and 5.36 mg kg-1) on the chlorophyll and carotenoid contents as well as the photosynthetic function of tobacco leaves (Long Jiang 911) were studied. The key proteins in these physiological processes were quantitatively analyzed using a TMT-based proteomics approach. Cd stress was found to inhibit the expression of key enzymes during chlorophyll synthesis in leaves, resulting in a decrease of the Chl content. However, Zn stress did not significantly influence the chlorophyll content. Leaves adapted to Zn stress by upregulating CAO expression and increase the Chl b content. Although the Car content in leaves did not significantly change under either Cd or Zn stress, the expressions of ZE and VDE during Car metabolism decreased significantly under Cd stress. This was accompanied by damages to the xanthophyll cycle and the NPQ-dependent energy dissipation mechanism. In contrast, under Zn stress, leaves adapted to Zn stress by increasing the expression of VDE, thus improving NPQ. Under Cd stress, the expressions of three sets of proteins were significantly down-regulated, including PSII donor-side proteins (PPD3, PPD6, OEE1, OEE2-1, OEE2-2, OEE2-3, and OEE3-2), receptor-side proteins (D1, D2, CP43, CP47, Cyt b559α, Cyt b559β, PsbL, PsbQ, PsbR, Psb27-H1, and Psb28), and core proteins of the PSI reaction center (psaA, psaB, psaC, psaD, psaE-A, PsaE-B, psaF, psaG, psaH-1, psaK, psaL, psaN, and psaOL). In comparison, only eight of the above proteins (PPD6, OEE3-2, PsbL, PsbQ, Psb27-H1, psaL, and psaOL) were significantly down-regulated by Zn stress. Under Cd stress, both the donor side and the receptor side of PSII were damaged, and PSII and PSI experienced severe photoinhibition. However, Zn stress did not decrease either PSII or PSI activities in tobacco leaves. In addition, the expression of electron transport-related proteins (cytb6/f complex, PC, Fd, and FNR), ATPase subunits, Rubisco subunits, and RCA decreased significantly in leaves under Cd stress. However, no significant changes were observed in any of these proteins under Zn stress. Although Cd stress was found to up-regulate the expressions of PGRL1A and PGRL1B and induce an increase of PGR5/PGRL1-CEF in tobacco leaves, NDH-CEF was significantly inhibited. Under Zn stress, the expressions of ndhH and PGRL1A in leaves were significantly up-regulated, but there were no significant changes in either NDH-CEF or PGR5/PGRL-CEF. Under Cd stress, the expressions of proteins related to Fd-dependent nitrogen metabolism and reactive oxygen species (ROS) scavenging processes (e.g., FTR, Fd-NiR, and Fd-GOGAT) were significantly down-regulated in leaves. However, no significant changes of any of the above proteins were identified under Zn stress. In summary, Cd stress could inhibit the synthesis of chlorophyll in tobacco leaves, significantly down-regulate the expressions of photosynthesis-related proteins or subunits, and suppress both the xanthophyll cycle and NDH-CEF process. The expressions of proteins related to the Fd-dependent nitrogen metabolism and ROS scavenging were also significantly down-regulated, which blocked the photosynthetic electron transport, thus resulting in severe photoinhibition of both PSII and PSI. However, Zn stress had little effect on the photosynthetic function of tobacco leaves.
Zhang H
,Xu Z
,Guo K
,Huo Y
,He G
,Sun H
,Guan Y
,Xu N
,Yang W
,Sun G
... -
《-》
Cyclic electron flow modulate the linear electron flow and reactive oxygen species in tomato leaves under high temperature.
The cyclic electron flow (CEF) around photosystem I (PSI) plays a crucial role in photosynthesis and also functions in plant tolerance of abiotic environmental stress. However, the role of PGR5/PGRL1- and NDH-dependent CEF in tomato under hightemperature (HT) is poorly understood. Here, we assessed the photoprotective effect of these pathways in tomato leaves under HT by using antimycin A (AA) and rotenone (R), which are chemical inhibitors of PGR5/PGRL1- and NDH-dependent CEF, respectively. The results showed that AA treatment caused significantly greater inhibition of CEF under HT compared to R treatment. Moreover, AA treatment caused a greater decrease in maximal photochemistry efficiency (Fv/Fm) and increased damage to the donor and acceptor side of photosystem II (PSII); however, the limitation of the acceptor side in PSI [Y(NA)] was significantly increased. In addition, thylakoid membrane integrity was compromised and reactive oxygen species, proton gradient (ΔpH), antioxidant enzyme activity, and the expression of photosystem core subunit genes were significantly decreased under AA treatment. These findings indicate that PGR5/PGRL1-dependent CEF protects PSII and PSI from photooxidative damage through the formation of ΔpH while maintaining thylakoid membrane integrity and normal gene expression levels of core photosystem components. This study demonstrates that PGR5/PGRL1-dependent CEF plays a major role in HT response in tomato.
Lu J
,Yin Z
,Lu T
,Yang X
,Wang F
,Qi M
,Li T
,Liu Y
... -
《-》
Induction of cyclic electron flow around photosystem I during heat stress in grape leaves.
Photosystem II (PSII) in plants is susceptible to high temperatures. The cyclic electron flow (CEF) around PSI is thought to protect both PSII and PSI from photodamage. However, the underlying physiological mechanisms of the photosynthetic electron transport process and the role of CEF in grape at high temperatures remain unclear. To investigate this issue, we examined the responses of PSII energy distribution, the P700 redox state and CEF to high temperatures in grape leaves. After exposing 'Cabernet Sauvignon' leaves to various temperatures (25, 30, 35, 40 and 45°C) in the light (600μmol photons m-2s-1) for 4h, the maximum quantum yield of PSII (Fv/Fm) significantly decreased at high temperatures (40 and 45°C), while the maximum photo-oxidizable P700 (Pm) was not affected. As the temperature increased, higher initial rates of increase in post-illumination Chl fluorescence were detected, which were accompanied by an increase in high energy state quenching (qE). The chloroplast NAD(P)H dehydrogenase-dependent CEF (NDH-dependent CEF) activities were different among grape cultivators. 'Gold Finger' with greater susceptibility to photoinhibition, exhibited lower NDH-dependent CEF activities under acute heat stress than a more heat tolerant 'Cabernet Sauvignon'. These results suggest that overclosure of PSII reaction centers at high temperature resulted in the photoinhibition of PSII, while the stimulation of CEF in grape played an important role in the photoprotection of PSII and PSI at high temperatures through contributing to the generation of a proton gradient.
Sun Y
,Geng Q
,Du Y
,Yang X
,Zhai H
... -
《-》
Thioredoxin-like protein CDSP32 alleviates Cd-induced photosynthetic inhibition in tobacco leaves by regulating cyclic electron flow and excess energy dissipation.
Thioredoxin-like protein CDSP32 (Trx CDSP32), a thioredoxin-like (Trx-like) protein located in the chloroplast, can regulate photosynthesis and the redox state of plants under stress. In order to examine the role of Trx CDSP32 in the photosynthetic apparatus of plants exposed to cadmium (Cd), the effects of Trx CDSP32 on photosynthetic function and photoprotection in tobacco leaves under Cd exposure were studied using a proteomics approach with wild-type (WT) and Trx CDSP32 overexpression (OE) tobacco plants. Cd exposure reduced stomatal conductance, blocked PSII photosynthetic electron transport, and inhibited carbon assimilation. Increased water use efficiency (WUE), cyclic electron flow (CEF) of the proton gradient regulation 5 pathway (PGR5-CEF), and regulated energy dissipation [Y(NPQ)] are important mechanisms of Cd adaptation. However, CEF of the NAD(P)H dehydrogenase pathway (NDH-CEF) was inhibited by Cd exposure. Relative to control conditions, the expression levels of violaxanthin de-epoxidase (VDE) and photosystem II 22 kDa protein (PsbS) in OE leaves were significantly increased under Cd exposure, but those in WT leaves did not change significantly. Moreover, the expression of zeaxanthin epoxidase (ZE) under Cd exposure was significantly higher than that in WT leaves. Thus, Trx CDSP32 increased Y(NPQ) and alleviated PSII photoinhibition under Cd exposure. Trx CDSP32 not only increased PGR5-like protein 1A and 1B expression, but also alleviated the down-regulation of NAD(P)H-quinone oxidoreductase subunits induced by Cd exposure. Thus, Trx CDSP32 promotes CEF in Cd-exposed tobacco leaves. Thus, Trx CDSP32 alleviates the Cd-induced photoinhibition in tobacco leaves by regulating two photoprotective mechanisms: CEF and xanthophyll cycle-dependent energy dissipation.
Zhang H
,Liu X
,Zhang H
,Wang Y
,Li T
,Che Y
,Wang J
,Guo D
,Sun G
,Li X
... -
《-》